Examples



mdbootstrap.com



 
Статья
2020

Synergism of Triallyl Cyanurate and Divinylbenzene in a Dynamically Vulcanized Blend of Polypropylene with Hydrogenated Styrene–Butadiene–Styrene Block Copolymer


A. E. ZaikinA. E. Zaikin, A. R. AkhmetovA. R. Akhmetov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220050171
Abstract / Full Text

The synergistic effect of divinylbenzene and triallyl cyanurate on the properties and structure of the thermoplastic vulcanizate prepared from a blend of polypropylene and hydrogenated styrene–butadiene–styrene triblock copolymer by vulcanization under dynamic conditions with 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane was revealed. The synergism consists in the enhancement of the strength, increase in the relative elongation, and decrease in the compression set to a greater extent then when using divinylbenzene or triallyl cyanurate separately. The synergism is caused by the increased gel fraction content and vulcanization network thickness, with preservation of the higher molecular mass of the polypropylene matrix.

Author information
  • Kazan National Research University of Technology, Kazan, 420015, Tatarstan, RussiaA. E. Zaikin & A. R. Akhmetov
References
  1. Banerjee, S.S., Burbine, S., Shivaprakash, N.K., and Mead, J., Polymers, 2019, vol 11, no. 2, pp. 347–359. https://doi.org/10.3390/polym11020347
  2. Simîes, D.N., Pittol, M., Tomacheski, D., Ribeiro, V.F., and Santana, R.M.C., Mater. Res., 2017, vol. 20, no. 2, pp. 325–330. https://doi.org/10.1590/1980-5373-MR-2016-0790
  3. Sengupta, P. and Noordermeer, J.W.M., J. Elastom. Plast., 2004, vol. 36, no. 4, pp. 307–331. https://doi.org/10.1177/0095244304042668
  4. Drobny, J.G., Handbook of Thermoplastic Elastomers, Norwich: Elsevier, 2014.
  5. Ning, N., Li, S., Wu, H., Tian, H., Yao, P., Hu, G.-H., Tian, M., and Zhang, L., Prog. Polym. Sci., 2018, vol. 79, no. 4, pp. 61–97. https://doi.org/10.1016/j.progpolymsci.2017.11.003
  6. Zaikin, A.E. and Akhmetov, A.R., Russ. J. Appl. Chem., 2019, vol. 92, no. 3, pp. 339–346. https://doi.org/10.1134/S1070427219030030
  7. Wu, Y., Shentu, B., and Weng, Z., Appl. Polym. Sci., 2016, vol. 134, no. 5, ID 44392. https://doi.org/10.1002/app.44392
  8. Sheng, B.-R., Xie, B.-H., Yang, W., Li, Q.-G., and Yang, M.-B., J. Macromol. Sci., Part B: Physics, 2008, vol. 47, pp. 1236–1250. https://doi.org/10.1080/00222340802403479
  9. Rassol, T.R., Song, P., and Wang, S., Construct. Build. Mater., 2018, vol. 182, no. 9, pp. 134–143. https://doi.org/10.1016/j.conbuildmat.2018.06.104
  10. Rahmat, M., Ghasemi, I., Karrabi, M., Azizi, H., Zandi, M., and Riahinezhad, M., Exp. Polym. Lett., 2015, vol. 9, no. 12, pp. 1133–1141. https://doi.org/10.3144/expresspolymlett.2015.101
  11. Ovejero, G., Perez, P., Romero, M.D., Guzman, I., and Di, Å.E., Eur. Polym. J., 2007, vol. 43, no. 4, pp. 1444–1449. https://doi.org/10.1016/j.eurpolymj.2007.01.007
  12. Danusso, F. and Gianotti, G., Eur. Polym. J., 1968, vol. 4, pp. 165–171. https://doi.org/10.1016/0014-3057(68)90018-9
  13. Peterson, J.D., Vyazovkin, S., and Wight, C.A., Macromol. Chem. Phys., 2001, vol. 202, no. 6, pp. 775–784. https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G