Examples



mdbootstrap.com



 
Статья
2020

Synthesis of Ethyl 2,2-Bis{[(benzoylcarbamothioyl)oxy]methyl}propanoate and Its Complexes with Copper(II) and Cobalt(II) Ions


A. F. MaksimovA. F. Maksimov, A. A. ZhukovaA. A. Zhukova, A.-M. P. ErnandesA.-M. P. Ernandes, M. P. KutyrevaM. P. Kutyreva, A. R. GataulinaA. R. Gataulina, G. A. KutyrevG. A. Kutyrev
Российский журнал общей химии
https://doi.org/10.1134/S1070363220070142
Abstract / Full Text

The structures of ethyl 2,2-bis{[(benzoylcarbamothioyl)oxy]methyl}propanoate and its 1 : 1 complexes with copper(II) and cobalt(II) ions were determined by electronic absorption, IR, and 1H and 13C NMR spectroscopy and elemental analysis. The coordination entity in the complexes includes oxygen and sulfur atoms of the benzoyl and carbamothioyloxy groups of both ligand branches. The copper(II) ion has octahedral configuration with trigonal distortion, and the cobalt(II) ion has five-coordinate square–pyramidal configuration. The thermal behavior of the title compounds was studied by differential scanning calorimetry and thermogravimetric analysis.

Author information
  • Kazan National Research Technological University, 420015, Kazan, RussiaA. F. Maksimov, A. A. Zhukova, A.-M. P. Ernandes & G. A. Kutyrev
  • Kazan Federal University, 420008, Kazan, RussiaM. P. Kutyreva & A. R. Gataulina
References
  1. Zagar, E. and Zigon, M., Prog. Polym. Sci., 2011, vol. 36, no. 1, p. 53. https://doi.org/10.1016/j.progpolymsci.2010.08.004
  2. Korolev, V.G. and Bubnova, M.L., Giperrazvetvlennye polimery – novyi moshchnyi stimul dal’neishego razvitiya oblasti trekhmernoi polimerizatsii i revolyutsiya v polimernom materialovedenii (Hyperbranched Polymers—A Novel Powerful Impetus for Further Development of Three-dimensional Polymerization and a Revolution in Polymer Materials Science), Moscow: IPKhF RAN, 2006.
  3. Wang, D., Zhao, T., Zhu, X., Yan, D., and Wang, W., Chem. Soc. Rev., 2015, vol. 44, no. 12, p. 4023. https://doi.org/10.1039/C4CS00229F
  4. Yan, D., Gao, C., and Frey, H., Hyperbranched Polymers. Synthesis, Properties, and Applications, Hoboken: Wiley, 2010.
  5. Kutyreva, M.P., Babkina, S.S., Atanasyan, T.K., Ulakhovich, N.A., and Kutyrev, G.A., Novye materialy: biologicheski aktivnye giperrazvetvlennye polimery i ikh metallokompleksy (New Materials: Biologically Active Hyberbranched Polymers and Their Metal Complexes), Moscow: MGPU, 2014.
  6. Wu, W., Tang, R., Li, Q., and Li, Z., Chem. Soc. Rev., 2015, vol. 44, no. 12, p. 3997. https://doi.org/10.1039/C4CS00224e
  7. Abd-El-Aziz, A.S., Carraher, C.E., Jr., Pittman, C.U.Jr., and Zeldin, M., Inorganic and Organometallic Macromolecules, New York: Springer, 2008, vol. 1, p. 21. https://doi.org/10.1007/978-0-387-72947-3
  8. Seiler, M., Rolker, J., and Arlt, W., Macromolecules, 2003, vol. 36, no. 6, p. 2085. https://doi.org/10.1021/ma025994n
  9. Jang, J.G. and Bae, Y.C., J. Chem. Phys., 2001, vol. 114, no. 11, p. 5034. https://doi.org/10.1063/1.1329647
  10. Tziveleka, L-A., Kontoyanni, C., Sideraton, Z., Tsiourvas, D., and Paleos, C.M., Macromol. Biosci., 2006, vol. 6, no. 2, p. 161. https://doi.org/10.1002/mabi.200500181
  11. Kutyreva, M.P., Ulakhovich, N.A., Karataeva, F.K., Rezepova, M.V., and Kutyrev, G.A., Russ. J. Inorg. Chem., 2012, vol. 57. N 9. P. 1244. https://doi.org/10.1134/S0036023612090136
  12. Kutyreva, M.P., Gataulina, A.R., Kutyrev, G.A., Nizamov, I.S., and Ulakhovich, N.A., Russ. J. Gen. Chem. 2011, vol. vol. 81, no. 7, p. 1535. https://doi.org/10.1134/s1070363211070206
  13. Kutyrev, G.A., Gataulina, A.R., Kutyreva, M.P., Usmanova, G.Sh., and Ulakhovich, N.A., Vestn. Kazan. Tekhnol. Univ., 2010, no. 12, p. 428.
  14. Reul, R., Nguyen, J., and Kissel, T., Biomaterials, 2009, vol. 30, no. 29, p. 5815. https://doi.org/10.1016/j.biomaterials.2009.06.057
  15. Nizamov, I.S., Shamilov, R.R., Mart’yanov, E.M., Cherkasov, R.A., Sergeenko, G.G., and Kutyrev, G.A., Russ. J. Gen. Chem., 2008, vol. 78, no. 7, p. 1338. https://doi.org/10.1134/S1070363208070086
  16. Cherkasov, R.A., Shamilov, R.R., Nizamov, I.S., Gataulina, A.R., and Kutyrev, G.A., Phosphorus, Sulfur Silicon Relat. Elem., 2011, vol. 186, no. 4, p. 1001. https://doi.org/10.1080/10426507.2010.509879
  17. Nizamov, I.S., Shamilov, R.R., Cherkasov, R.A., Sergeenko, G.G., and Kutyrev, G.A., Russ. J. Gen. Chem., 2007, vol. 77, no. 12, p. 2205. https://doi.org/10.1134/S1070363207120213
  18. Kutyrev, G.A., Busygina, A.A., Akhmadulina, E.N., Rakhmatullina, L.R., Kutyreva, M.P., and Gataulina, A.R., Vestn. Kazan. Tekhnol. Univ., 2016, vol. 19, no. 14, p. 15.
  19. Kutyreva, M.P., Maksimov, A.F., Ernandes, A.M.P., Zhukova, A.A., Gataulina, A.R., and Kutyrev, G.A., Russ. J. Gen. Chem., 2020, vol. 90, no. 2, p. 268. https://doi.org/10.1134/s1070363220020164
  20. Kutyrev, G.A., Maksimov, A.F., Ernandes, A.-M.P., Kutyreva, M.P., and Gataulina, A.R., Vestn. Kazan. Tekhnol. Univ., 2018, vol. 21, no. 9, p. 69.
  21. Quas, L., Schrӧder, U., Schrӧder, B., Dietze, F., and Beyer, L., Solvent Extr. Ion Exch., 2000, vol. 18, no. 6, p. 1167. https://doi.org/10.1080/07366290008934727
  22. Vallejos, S.T., Erben, M.F., Piro, O.E., Castellano, E.E., and Della Védova, C.O., Polyhedron, 2009, vol. 28, no. 5, p. 937. https://doi.org/10.1016/j.poly.2009.01.022
  23. Plutín, A.M., Suárez, M., Ochoa, E., Machado, T., Mocelo, R., Concellón, J.M., and Rodríguez-Solla, H., Tetrahedron, 2005, vol. 61, no. 24, p 5812. https://doi.org/10.1016/j.tet.2005.04.018
  24. Marquez, H., Loupy, A., Calderon, O., and Pérez, E.R., Tetrahedron, 2006, vol. 62, no. 11, p. 2616. https://doi.org/10.1016/j.tet.2005.12.037
  25. Moustafa, H.Y., Younis, M.A., Azab, M.M., and Khalil, M.I., Bull. Fac. Sci. Zigazig Univ., 2017, vol. 39, p. 149. https://doi.org/10.21608/BFSZU.2017.31048
  26. Hakan, A., Ulrich, F., and Nevzat, K., Spectrochim. Acta, Part A, 2007, vol. 67, nos. 3–4, p. 936. https://doi.org/10.1016/j.saa.2006.09.011
  27. Gölcü, A., Yücesoy, C., and Serin, S., Synth. React. Inorg. Met.-Org. Chem., 2004, vol. 34, no. 7, p. 1259. https://doi.org/10.1081/sim-120039270
  28. Nakomoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, 4th ed.
  29. Lever, E., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984, 2nd ed.
  30. Structure Determination of Organic Compounds: Tables of Spectral Data, Pretsch, E., Bühlmann, P., and Affolter, C., Eds., Berlin: Springer, 2000, 3rd ed.
  31. Schrӧder, U., Beyer, L., Dietze, R., Richter, R., Schmidt, S., and Hoyer, E., J. Prakt. Chem., 1995, vol. 337, no. 1, p. 184. https://doi.org/10.1002/prac.19953370141
  32. Mohd Nor, N.A.M., Ahmad, J., Abdullah, Z., Halim, S.N.A., Otero-de-la-Roza, A., and Tiekink, E.R.T., Z. Crystallogr. Cryst. Mater., 2015, vol. 230, no. 6, p. 397. https://doi.org/10.1515/zkri-2014-1820
  33. Bleasdale, C., Ellwood, S.B., Golding, B.T., Slaich, P.K., Taylor, D.J., and Watson, W.P., J. Chem. Soc., Perkin Trans. 1, 1994, p. 2859. https://doi.org/10.1039/P19940002859
  34. Beck, M.T. and Nagypal, I., Chemistry of Complex Equilibria, Budapest: Akad. Kiado, 1985.