Impact of the Synthesis Method on Electrochemical Performance of La0.5Sr0.5MnO3 Perovskite Oxide as a Cathode Material in Alkaline Fuel Cells

N. Khellaf N. Khellaf , A. Kahoul A. Kahoul , F. Naamoune F. Naamoune , M. Cheriti M. Cheriti
Российский электрохимический журнал
Abstract / Full Text

The present research investigates the sol–gel route using Pechini, citrate and alkoxide methods in order to obtain strontium doped lanthanum manganite perovskite La0.5Sr0.5MnO3 (LSMO) as nanometric materials. The electrocatalytic activity of carbon supported perovskite denoted (LSMO/C) used as an electrocatalyst for oxygen reduction reaction (ORR) in 0.1 M KOH electrolyte has been studied using a rotating disk electrode. The oxide powders were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Brunauer–Emmett–Teller (BET) method and transmission electron microscopy (TEM). X-ray diffraction results showed that the powders were primarily identified to a perovskite structure phase La0.5Sr0.5MnO3 with nanometric sized particles of about 20 nm and homogeneous morphology. Results related to the electrochemical study of ORR showed that the perovskite oxide synthesized by the Pechini method yielded an electrode material with improved electrochemical activity compared to those elaborated through citrate and alkoxide methods.

Author information
  • Laboratory for Energetics and Electrochemistry of Solids (LEES), Faculty of Technology, Ferhat Abbas-Setif 1 University, 19000, Setif, Algeria

    N. Khellaf, A. Kahoul, F. Naamoune & M. Cheriti

  • Department of Chemistry, Faculty of Sciences, Ferhat Abbas-Setif1 University, 19000, Setif, Algeria

    A. Kahoul

  1. Li, Q., Guo, M., Wang, K., Wei, Z., Du, G., Zhang, G., and Chen, N., LaSr2Mn2O7 ruddlesden-popper manganites for oxygen reduction and electrochemical capacitors, J. Rare Earths, 2020, vol. 38, p. 763.
  2. Lim, D., Kong, H., Lim, C., Kim, N., Shim, S.E., and Baeck, S.H., Spinel-type NiCo2O4 with abundant oxygen vacancies as a high-performance catalyst for the oxygen reduction reaction, Int. J. Hydrogen Energy, 2019, vol. 44, p. 23775.
  3. Jin, C., Cao, X., Zhang, L., Zhang, C., and Yang, R., Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction, J. Power Sources, 2013, vol. 24, p. 225.
  4. Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science, 2009, vol. 323, p. 760.
  5. Garcia, E.M., Tarôco, H.A., Matencio, T., Domin-gues, R.Z., and Dos Santos, J.A.F., Electrochemical study of La0.6Sr0.4Co0.8Fe0.2O3 during oxygen evolution reaction, Int. J. Hydrogen Energy, 2012, vol. 37, p. 6400.
  6. Suntivich, J., Gasteiger, H.A., Yabuuchi, N., Nakanishi, H., Goodenough, J.B., and Shao-Horn, Y., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries, Nat. Chem., 2011, vol. 3, p. 546.
  7. Teng, F., Han, W., Liang, S., Gaugeu, B., Zong, R., and Zhu, Y., Catalytic behavior of hydrothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of CO and CH4, J. Catal., 2007, vol. 250, p. 1.
  8. Ngida, R.E.A., Zawrah, M.F., Khattab, R.M., and Heikal, E., Hydrothermal synthesis, sintering and characterization of nano La-manganite perovskite doped with Ca or Sr, Ceram. Int., 2019, vol. 45, p. 4894.
  9. Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., Dai, J.M., and Song, W.H., Synthesis of magnetoresistive La0.7Sr0.3MnO3 nanoparticles by an improved chemical coprecipitation method, J. Magn. Magn. Mater., 2009, vol. 321, p. 2378.
  10. Haron, W., Wisitsoraat, A., Sirimahachai, U., and Wongnawa, S., A simple synthesis and xharacterization of LaMO3 (M = Al, Co, Fe, Gd) perovskites via chemical co-precipitation method, Songklanakarin J. Sci. Technol., 2018, vol. 40, p. 484.
  11. Zhang, Q. and Saito, F., Mechanochemical synthesis of LaMnO3 from La2O3 and Mn2O3 powders, J. Alloys Compd., 2000, vol. 297, p. 99.
  12. Nâamoune, F., Messaoudi, B., Kahoul, A., Cherchour, N., Pailleret, A., and Takenouti, H., A new sol-gel synthesis of Mn3O4 oxide and its electrochemical behavior in alkaline medium, Ionics (Kiel), 2012, vol. 18, p. 365.
  13. Kahoul, A., Nkeng, P., Hammouche, A., Naamoune, F., and Poillerat, G., A sol-gel route for the synthesis of Bi2Ru2O7 pyrochlore oxide for oxygen reaction in alkaline medium, J. Solid State Chem., 2001, vol. 161, p. 379.
  14. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, J. Mol. Catal., 1986, vol. 38, p. 5.
  15. Geng, D., Chen, Y., Chen, Y., Li, Y., Li, R., Sun, X., Ye, S., and Knights, S., High oxygen-reduction activity and durability of nitrogen-doped graphene, Energy Environ. Sci., 2011, vol. 4, p. 760.
  16. Tulloch, J. and Donne, S.W., Activity of perovskite La1 – xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes, J. Power Sources, 2009, vol. 188, p. 359.
  17. Siebert, E., Hammouche, A., and Kleitz, M., Impedance spectroscopy analysis of La1 – xSrxMnO3-yttria-stabilized zirconia electrode kinetics, Electrochim. Acta, 1995, vol. 40, p. 1741.
  18. Khellaf, N., Kahoul, A., Naamoune, F., and Alonso-Vante, N., Electrochemistry of nanocrystalline La0.5Sr0.5MnO3 perovskite for the oxygen reduction reaction in alkaline medium, Electrocatalysis, 2017, vol. 8, p. 450.
  19. Baythoun, M.S.G. and Sale, F.R., Production of strontium-substituted lanthanum manganite perovskite powder by the amorphous citrate process, J. Mater. Sci., 1982, vol. 17, p. 2757.
  20. Livage, J., Beteille, F., Roux, C., Chatry, M., and Davidson, P., Sol–gel synthesis of oxide materials, Acta Mater., 1998, vol. 46, p. 743.
  21. Thiele, D. and Züttel, A., Electrochemical characterisation of air electrodes based on La0.6Sr0.4CoO3 and carbon nanotubes, J. Power Sources, 2008, vol. 183, p. 590.
  22. Poux, T., Napolskiy, F.S., Dintzer, T., Kéranguéven, G., Istomin, S.Y., Tsirlina, G.A., Antipov, E.V., and Savinova, E.R., Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction, Catal. Today, 2012, vol. 189, p. 83.
  23. Zhu, Y., Zhou, W., and Shao, Z., Perovskite/carbon composites: applications in oxygen electrocatalysis, Small, 2017, vol. 13, p. 1.
  24. Cullity, B., Answers to Problems: Elements of X-Ray Diffraction, Addison-Wesley, 1978.
  25. Bursell, M., Pirjamali, M., and Kiros, Y., La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes, Electrochim. Acta, 2002, vol. 47, p. 1651.
  26. Jund, R., Koenig, J.F., and Brenet, J., Oxydation anodique des ions Mn2+ et Fe2+ en milieu marin reconstitue, Electrochim. Acta, 1981, vol. 26, p. 83.
  27. Kear, G. and Walsh, F., The characteristics of a true tafel slope, Corros. Mater., 2005, vol. 30, p. 51.
  28. Tiwari, S.K., Chartier, P., and Singh, R.N., Preparation of perovskite-type oxides of cobalt by the malic acid aided process and their electrocatalytic surface properties in relation to oxygen evolution, J. Electrochem. Soc., 1995, vol. 142, p. 148.
  29. Levine, S. and Smith, A.L., Theory of the differential capacity of the oxide/aqueous electrolyte interface, Discuss. Faraday Soc., 1971, vol. 52, p. 290.
  30. Demarconnay, L., Coutanceau, C., and Léger, J.M., Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol, Electrochim. Acta, 2004, vol. 49, p. 4513.
  31. Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980.
  32. Devos, O., Gabrielli, C., and Tribollet, B., Simultaneous EIS and in situ microscope observation on a partially blocked electrode application to scale electrodeposition, Electrochim. Acta, 2006, vol. 51, p. 1413.