Examples



mdbootstrap.com



 
Статья
2017

Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water


A. O. Idris A. O. Idris , J. P. Mafa J. P. Mafa , N. Mabuba N. Mabuba , O. A. Arotiba O. A. Arotiba
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517020082
Abstract / Full Text

The application of gold nanoparticles (AuNPs) modified glassy carbon electrode in the electrochemical detection of arsenic is presented. AuNPs were electrodeposited onto the surface of a glassy carbon electrode (GCE) by cyclic voltammetry in a potential range of–400 to 1100 mV for 10 cycles. The modification of the GCE with AuNPs resulted in increased redox current of [Fe(CN)6]3–/4– when compared to that obtained from bare GCE. As(III) detection was carried out using square wave anodic stripping voltammetry (SWASV) at the following optimised conditions: pH 1, deposition potential of–600 mV and pre-concentration time of 60 s. The GCE–AuNPs electrode detected As(III) to the limit of 0.28 ppb and was not susceptible to many interfering cations except Cd, Cu and Hg. The GCE–AuNPs electrode was used for the quantitative analysis of arsenic in real water sample. The results obtained were in good correlation with those obtained from inductively coupled plasma—optical emission spectroscopy technique, thus validating the reported method.

Author information
  • Department of Applied Chemistry, University of Johannesburg, PO Box 17011, Doornfontein, 2028, Johannesburg, South Africa

    A. O. Idris & J. P. Mafa

  • Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa

    N. Mabuba & O. A. Arotiba

References
  1. Liu, Y. and Wei, W., Jointly modified single-walled carbon nanotubes on low resistance monolayer modified electrode for arsenic(III) detection, J. Electroanal. Chem., 2008, vol. 624, pp. 299–304.
  2. Huang, J.-F. and Chen, H.-H., Gold-nanoparticleembedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III), 2013, Talanta, vol. 116, pp. 852–859.
  3. Theytaz, J., Braschler, T., van Lintel, H., Renaud, P., Diesel, E., Merulla, D., and van der Meer, J., Biochip with E. coli bacteria for detection of arsenic in drinking water, Procedia Chem., 2009, vol. 1, pp. 1003–1006.
  4. Karim, M.M., Arsenic in groundwater and health problems in Bangladesh, Water Resour., 2000, vol. 34, pp. 304–310.
  5. Domínguez-González, R., González Varela, L., and Bermejo-Barrera, P., Functionalized gold nanoparticles for the detection of arsenic in water, Talanta, 2014, vol. 118, pp. 262–269.
  6. Liu, Z.-G., Chen, X., Liu, J.-H., and Huang, X.-J., Robust electrochemical analysis of As(III) integrating with interference tests: A case study in groundwater, J. Hazard. Mater., 2014, vol. 278, pp. 66–74.
  7. Dai, B., Cao, M., Fang, G., Liu, B., Dong, X., Pan, M., and Wang, S., Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP–MS, Hazard. Mater., 2012, vol. 219–220, pp. 103–110.
  8. Anezaki, K., Nukatsuka, I., and Ohzeki, K., Determination of arsenic(III) and total arsenic(III,V) in water samples by resin suspension graphite furnace atomic absorption spectrometry, Anal. Sci., 1999, vol. 15, pp. 829–834.
  9. Forzani, E.S., Foley, K., Westerhoff, P., and Tao, N., Detection of arsenic in groundwater using a surface plasmon resonance sensor, Sens. Actuators B: Chem., 2007, vol. 123, pp. 82–88.
  10. Komorowicz, I. and Barałkiewicz, D., Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—Last decade review, Talanta, 2011, vol. 84, no. 2, pp. 247–261.
  11. Wang, S., Wang, Y., Zhou, L., Li, J., Wang, S., and Liu, H., Fabrication of an effective electrochemical platform based on graphene and AuNPs for high sensitive detection of trace Cu2+, Electrochim. Acta, 2014, vol. 132, pp. 7–14.
  12. Achary, G., Kumaraswamy, M.N., Viswanatha, R., and Arthoba Nayaka, Y., An organically modified exfoliated graphite electrode for the voltammetric determination of lead ions in contaminated water samples, Russ. J. Electrochem., 2015, vol. 51, pp. 679–685.
  13. Ndlovu, T., Arotiba, O.A., Sampath, S., Krause, R.W., and Mamba, B.B., Electrochemical detection and removal of lead in water using poly(propylene imine) modified re-compressed exfoliated graphite electrodes, J. Appl. Electrochem., 2011, vol. 41, pp. 1389–1396.
  14. Cheraghi, S., Taher, M.A., and Fazelirad, H., Voltammetric determination of silver with a new multi-walled carbon nanotube modified paste electrode, Russ. J. Electrochem., 2015, vol. 51, pp. 271–277.
  15. Idris, A.O., Mabuba, N., and Arotiba, O.A., Electroanalysis of selenium in water on an electrodeposited gold-nanoparticle modified glassy carbon electrode, J. Electroanal. Chem., 2015, vol. 758, pp. 7–11.
  16. Kopanica, M. and Novotny, L., Determination of traces of arsenic(III) by anodic stripping voltammetry in solutions, natural waters and biological material, Anal. Chim. Acta, 1998, vol. 368, pp. 211–218.
  17. Hwang, G.-H., Han, W.-K., Hong, S.-J., Park, J.-S., and Kang, S.-G., Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode, Talanta, 2009, vol. 77, pp. 1432–1436.
  18. Ndlovu, T., Arotiba, O.A., Sampath, S., Krause, R.W., and Mamba, B.B., Electroanalysis of copper as a heavy metal pollutant in water using cobalt oxide modified exfoliated graphite electrode, Phys. Chem. Earth, Parts A/B/C, 2012, vol. 50–52, pp. 127–131.
  19. Janegitz, B.C., Marcolino-Junior, L.H., Campana-Filho, S.P., Faria, R.C., and Fatibello-Filho, O., Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan, Sens. Actuators B: Chem., 2009, vol. 142, pp. 260–266.
  20. Adeloju, S.B., Young, T.M., Jagner, D., and Batley, G.E., Constant current cathodic stripping potentiometric determination of arsenic on a mercury film electrode in the presence of copper ions, Anal. Chim. Acta, 1999, vol. 381, pp. 207–213.
  21. Wei, Z. and Somasundaran, P., Cyclic voltammetric study of arsenic reduction and oxidation in hydrochloric acid using a Pt RDE, J. Appl. Electrochem., 2004, vol. 34, pp. 241–244.
  22. Xiao, L., Wildgoose, G.G., and Compton, R.G., Sensitive electrochemical detection of arsenic(III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry, Anal. Chim. Acta, 2008, vol. 620, pp. 44–49.
  23. Wang, Z. and Ma, L., Gold nanoparticle probes, Coord. Chem. Rev., 2009, vol. 253, pp. 1607–1618.
  24. Liu, Z.-G. and Huang, X.-J., Voltammetric determination of inorganic arsenic, TrAC Trends Anal. Chem., 2014, vol. 60, pp. 25–35.
  25. Teixeira, M.C., de F. L. Tavares, E., Saczk, A.A., Okumura, L.L., das G. Cardoso, M., Magriotis, Z.M., and de Oliveira, M.F., Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode, Food Chem., 2014, vol. 154, pp. 38–43.
  26. Ting, S.L., Ee, S.J., Ananthanarayanan, A., Leong, K.C., and Chen, P., Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions, Electrochim. Acta, 2015, vol. 172, pp. 7–11.
  27. Li, D., Li, J., Jia, X., Han, Y., and Wang, E., Electrochemical determination of arsenic(III) on mercaptoethylamine modified Au electrode in neutral media, Anal. Chim. Acta, 2012, vol. 733, pp. 23–27.
  28. Benvidi, A., Firouzabadi, A.D., Moshtaghiun, S.M., Mazloum-Ardakani, M., and Tezerjani, M.D., Ultrasensitive DNA sensor based on gold nanoparticles/ reduced graphene oxide/glassy carbon electrode, Anal. Biochem., 2015, vol. 484, pp. 24–30.
  29. Lin, X., Ni, Y., and Kokot, S., Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples, Electrochim. Acta, 2014, vol. 133, pp. 484–491.
  30. Ndlovu, T., Mamba, B.B., Sampath, S., Krause, R.W., and Arotiba, O.A., Voltammetric detection of arsenic on a bismuth modified exfoliated graphite electrode, Electrochim. Acta, 2014, vol. 128, pp. 48–53.
  31. Hassan, S.S., Solangi, A.R., Kazi, T.G., Kalhoro, M.S., Junejo, Y., Tagar, Z.A., and Kalwar, N.H., Nafion stabilized ibuprofen–gold nanostructures modified screen printed electrode as arsenic(III) sensor, J. Electroanal. Chem., 2012, vol. 682, pp. 77–82.