Examples



mdbootstrap.com



 
Статья
2022

Correlation analysis of the solubility of organic compounds: influence of the polarizability effect


N. M. KhamaletdinovaN. M. Khamaletdinova, O. V. KuznetsovaO. V. Kuznetsova, A. N. EgorochkinA. N. Egorochkin
Российский химический вестник
https://doi.org/10.1007/s11172-022-3515-1
Abstract / Full Text

Literature data on the solubility (Sol) and Gibbs energy of dissolution (ΔG°) reported for 26 series of derivatives of benzene, pyridine, and fluorocarbons in various solvents were considered using correlation analysis. An excess charge appears on the reaction center due to the formation of weak solute—solvent complexes, which results in the manifestation of polarizability effect. It was established for the first time that the values of Sol and ΔG° depend on the joint influence of inductive, resonant, polarization, and steric effects of substituents, whereas contribution of the polarizability effect reaches 50%.

Author information
  • G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 ul. Tropinina, 603950, Nizhny Novgorod, Russian FederationN. M. Khamaletdinova, O. V. Kuznetsova & A. N. Egorochkin
References
  1. N. Bodor, M.-J. Huang, J. Pharm. Sci., 1992, 81, 954; DOI: https://doi.org/10.1002/jps.2600810924.
  2. T. M. Nelson, P. C. Jurs, J. Chem. Inf. Comput. Sci., 1994, 34, 601; DOI: https://doi.org/10.1021/ci00019a019.
  3. B. E. Mitchell, P. C. Jurs, J. Chem. Inf. Comput. Sci., 1998, 38, 489; DOI: https://doi.org/10.1021/ci970117f.
  4. F. Huyskens, H. Morissen, P. Huyskens, J. Mol. Struct., 1998, 441, 17; DOI:https://doi.org/10.1016/S0022-2860(97)00273-1.
  5. X.-Q. Chen, S. J. Cho, Y. Li, S. Venkatesh, J. Pharm. Sci., 2002, 91, 1838; DOI: https://doi.org/10.1002/jps.10178.
  6. C. Zhong, Q. Hu, J. Pharm. Sci., 2003, 92, 2284; DOI: https://doi.org/10.1002/jps.10499.
  7. A. Cheng, K. M. Merz, J. Med. Chem., 2003, 46, 3572; DOI: https://doi.org/10.1021/jm020266b.
  8. U. Domanska, A. Pobudkowska, M. Rogalski, J. Chem. Eng. Data, 2004, 49, 1082; DOI: https://doi.org/10.1021/je049907t.
  9. A. Jouyban, Handbook of Solubility Data Pharmaceuticals, CRC Press Taylor & Francis Group, New York, 2009, 552 pp.
  10. J. M. M. V. Sousa, A. J. Queimada, E. A. Macedo, I. M. A. Fonseca, Fluid Phase Equilib., 2013, 337, 60; DOI: https://doi.org/10.1016/j.fluid.2012.09.013.
  11. J. M. M. V. Sousa, I. M. A. Fonseca, J. Chem. Eng. Data, 2014, 59, 3605; DOI: https://doi.org/10.1021/je500525q.
  12. Y. Wu, Y. Di, X. Zhang, Y. Zhang, J. Chem. Thermodyn., 2016, 102, 257; DOI: https://doi.org/10.1016/j.jct.2016.07.023.
  13. Y. Wu, C. Wu, S. Yan, B. Hu, J. Chem. Eng. Data, 2019, 64, 5578; DOI: https://doi.org/10.1021/acs.jced.9b00661.
  14. R. Li, W. Wang, X. Chen, H. Chen, H. Bao, Y. Zhu, J. Zhao, D. Han, J. Chem. Eng. Data, 2020, 65, 2300; DOI: https://doi.org/10.1021/acs.jced.9b00817.
  15. O. V. Kuznetsova, A. N. Egorochkin, O. V. Novikova, Russ. J. Gen. Chem., 2006, 76, 554; DOI: https://doi.org/10.1134/S1070363206040104.
  16. O. V. Kuznetsova, A. N. Egorochkin, N. M. Khamaletdinova, L. G. Domratcheva-Lvova, J. Phys. Org. Chem., 2017, 30, e3662; DOI: https://doi.org/10.1002/poc.3662.
  17. A. N. Egorochkin, O. V. Kuznetsova, N. M. Khamaletdinova, L. G. Domratcheva-Lvova, J. Organomet. Chem., 2016, 823, 126; DOI: https://doi.org/10.1016/j.jorganchem.2016.09.020.
  18. P. Hobza, R. Zagradnik, Chem. Rev., 1988, 88, 871; DOI: https://doi.org/10.1021/cr00088a004.
  19. P. Hobza, R. Zahradnik, Intermolecular Complexes, Academia, Praha, 1988, 307 pp.
  20. C. D. Johnson, The Hammett Equation, Cambridge University Press, Cambridge, 1973, 208 pp.
  21. C. Hansch, A. Leo, R. W. Taft, Chem. Rev., 1991, 91, 165; DOI: https://doi.org/10.1021/cr00002a004.
  22. J. A. MacPhee, A. Panaye, J.-E. Dubois, Tetrahedron, 1978, 34, 3553; DOI: https://doi.org/10.1016/0040-4020(78)88431-2.
  23. V. I. Galkin, R. A. Cherkasov, Reaktsionnaya sposobnost’ organicheskikh soedinenii [Reactivity of Organic Compounds], 1981, 18, 111 (in Russian).
  24. M. G. Voronkov, A. N. Egorochkin, in The Chemistry of Organic Germanium, Tin, and Lead Compounds, Vol. 2, Ed. Z. Rappoport, Wiley-VCH, Chichester, 2002, p. 131.
  25. O. V. Kuznetsova, A. N. Egorochkin, N. M. Khamaletdinova, Russ. J. Gen. Chem., 2015, 85, 2617; DOI: https://doi.org/10.1134/S1070363215110195.
  26. O. V. Kuznetsova, A. N. Egorochkin, N. M. Khamaletdinova, L. G. Domratcheva-Lvova, J. Organomet. Chem., 2015, 779, 73; DOI: https://doi.org/10.1016/j.jorganchem.2014.12.004.
  27. P. D. Pacey, Q.-T. Tan, J. Phys. Chem., 1995, 99, 17729; DOI: https://doi.org/10.1021/j100050a010.
  28. N. R. Draper, H. Smith, Applied Regression Analysis, Wiley, New York, 1998, 404 pp.
  29. J. O. Rawlings, S. G. Pantula, D. A. Dickey, Applied Regression Analysis: A Research Tool, Springer, New York, 1998, 357 pp.
  30. A. N. Egorochkin, O. V. Kuznetsova, N. M. Khamaletdinova, L. G. Domratcheva-Lvova, Inorg. Chem. Acta, 2018, 471, 148; DOI: https://doi.org/10.1016/j.ica.2017.10.021.
  31. A. N. Yegorochkin, M. G. Voronkov, Elektronnoe stroenie organicheskikh soedinenii kremniya, germaniya i olova [Electronic Structure of Organic Compounds of Si, Ge, and Sn], Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2000, 615 pp. (in Russian).