Examples



mdbootstrap.com



 
Статья
2020

Ionization and Complexing Properties of Hyperbranched Polyester Poly[3-(2-aminoethyl)amino)]propionate


A. R. GataulinaA. R. Gataulina, P. O. SidorovP. O. Sidorov, S. V. YurtaevaS. V. Yurtaeva, V. A. PrytkovV. A. Prytkov, N. A. UlakhovichN. A. Ulakhovich, G. A. KutyrevG. A. Kutyrev, M. P. KutyrevaM. P. Kutyreva
Российский журнал общей химии
https://doi.org/10.1134/S1070363220030159
Abstract / Full Text

Syntheses of a polydentate ligand based on the second-generation hyperbranched polyester containing 3-(2-aminoethyl)amino]propionate groups and its metal complex with copper(II) ions have been elaborated. In view of the IR, electronic absorption, and EPR spectroscopy data, it has been suggested that the coordination sites in the metal-polymer complex are paramagnetic sites with the CuN4Solv2 or CuN2O2Solv2 composition (Solv = H2O, DMSO).

Author information
  • Kazan Federal University, A. Butlerov Institute of Chemistry, 420008, Kazan, RussiaA. R. Gataulina, V. A. Prytkov, N. A. Ulakhovich & M. P. Kutyreva
  • Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmette, Aix-Marseille University, 13009, Marseille, FranceP. O. Sidorov
  • E. K. Zavoisky Kazan Physical-Technical Institute of the Russian Academy of Sciences, 420029, Kazan, RussiaS. V. Yurtaeva
  • Kazan National Research Technological University, 420015, Kazan, RussiaG. A. Kutyrev
References
  1. Uflyand, I.E. and Dzhardimalieva, G.I., J. Coord. Chem., 2018, vol. 71, no. 9, p. 1272. https://doi.org/10.1080/00958972.2018.1465567
  2. Gao, С. and Yan, D., Prog. Polym. Sci., 2004, vol. 29, p. 183. https://doi.org/10.1016/j.progpolymsci.2003.12.002
  3. Yates, C.R. and Hayes, W., Eur. Polym. J., 2004, vol. 40, p. 1257. https://doi.org/10.1016/j.eurpolymj.2004.02.007
  4. Diallo, M., Balogh, L., Shafagati, A., Johnson, I.H., Goddard, W.A., and Tomalia, D.A., Environ. Sci. Technol., 1999, vol. 33, no. 5, p. 820. https://doi.org/10.1021/es980521a
  5. Jang, W.-D., Kamruzzaman Selim, K.M., Lee, C.-H., and Kang, I.-K., Prog. Polym. Sci., 2009, vol. 34, p. 1. https://doi.org/10.1016/j.progpolymsci.2008.08.003
  6. Manoj, E., Kurup, M.R.P., and Punnoose, A., Spectrochim. Acta. (A), 2009, vol. 72, no. 3, p. 474. https://doi.org/10.1016/j.saa.2008.10.030
  7. Wang, S.J., Brechbiel, M., and Wiener, E.C., Invest. Radiol., 2003, vol. 38, no. 10, p. 662. https://doi.org/10.1097/01.rli.0000084887.47427.75
  8. Labieniec, M. and Watala, C., Cent. Eur. J. Biol., 2009, vol. 4, no. 4, p. 434. https://doi.org/10.2478/s11535-009-0056-7
  9. Ottaviani, M.F., Montalti, F., Turro, N.I., and Tomalia, D.A., J. Phys. Chem. (B), 1997, vol. 101, no. 2, p. 158. https://doi.org/10.1021/jp962857h
  10. Bosman, A.W., Schenning, A.P.H.J., Janssen, R.A.J., and Meijer, E.W., Chem. Ber. Recueil., 1997, vol. 130, p. 725. https://doi.org/10.1002/cber.19971300608
  11. Krot, K.A., Danil de Namor, A.F., Aguilar-Cornejo, A., and Nolan, K.B., Inorg. Chim. Acta, 2005, vol. 358, p. 3497. https://doi.org/10.1016/j.ica.2005.05.001
  12. Diallo, M.S., Christie, S., Swaminathan, P., Balogh, L., Shi, X., Um, W., Papelis, C., Goddard, W.A., and Jonson, J.H., Langmuir, 2004, vol. 20, no. 7, p. 2640. https://doi.org/10.1021/la036108k
  13. Zhou, L., Russell, D.H., Zhao, M., and Crooks, R.M., Macromolecules, 2001, vol. 34, no. 11, p. 3567. https://doi.org/10.1021/ma001782j
  14. Ottaviani, M.F., Bossmann, S., Turro, N.J., and Tomalia, D.A., J. Am. Chem. Soc., 1994, vol. 116, no. 2, p. 661. https://doi.org/10.1021/ja00081a029
  15. Floriano, P.N., Noble, Schoonmaker, J.M., Poliakoff, E.D., McCarley, R.L., J. Am. Chem. Soc., 2001, vol. 123, no. 43, p. 10545. https://doi.org/10.1021/ja010549d
  16. Mecke, A., Uppuluri, S., Sassanella, T.M., Lee, D.K., Ramamoorthy, A., Baker, J.R.Jr., Orr, B.G., and Banaszak Holl, M.M., Chem. Phys. Lipids, 2004, vol. 132, no. 1, p. 3. https://doi.org/10.1016/j.chemphyslip.2004.09.001
  17. Kobayashi, H., Kawamato, S., Jo, S.K., Bryant, H.L.Jr., Brechbiel, M.W., and Star, R.A., Bioconjug. Chem., 2003, vol. 14, no. 2, p. 388. https://doi.org/10.1021/bc025633c
  18. Inoue, K., Prog. Polym. Sci., 2000, vol. 25, no. 4, p. 453. https://doi.org/10.1016/S0079-6700(00)00011-3
  19. Žagar, E. and Žigon, M., Prog. Polym. Sci., 2011, vol. 36, no. 1, p. 53. https://doi.org/10.1016/j.progpolymsci.2010.08.004
  20. Нäußler, M., Dong, H., and Tang, B.Z., Inorganic and Organometallic Macromolecules: Desigh and Application, Springer Science+Business Media, LLC, 2008, p. 21. https://doi.org/10.1007/978-0-387-72947-3_2
  21. Zhong, Z., Song, Y., Engbersen, J.F.J., Lok, M.C., Hennink, W.E., and Feijen, J., J. Control Release, 2005, vol. 109, no. 1–3, p. 317. https://doi.org/10.1016/j.jconrel.2005.06.022
  22. Reul, R., Nguyen, J., and Kissel, T., Biomaterials, 2009, vol. 30, no. 29, p. 5815. https://doi.org/10.1016/j.biomaterials.2009.06.057
  23. Arote, R., Kim, T.H., Hwang, Y.K., Jiang, H.L., Nah, J.W., Cho, M.H., and Cho, C.S., Biomaterials, 2007, vol. 28, no. 4, p. 735. https://doi.org/10.1016/j.biomaterials.2006.09.028
  24. Reul, R., Nguyen, J., Biela, A., Marxer, E., Bakowsky, U., Klebe, G., and Kissel, T., Int. J. Pharm., 2012, vol. 436, nos. 1–2, p. 97. https://doi.org/10.1016/j.ijpharm.2012.06.065
  25. Kutyreva, M.P., Gataulina, A.R., Kutyrev, G.A., Ulakhovich, N.A., Newman, T., Khasanova, E.M., Bondar, O.V., Yurtaeva, S.V., Ziganshina, S.A., and Khaldeeva, E.V., Inorg. Chim. Acta, 2016, vol. 450, p. 101. https://doi.org/10.1016/j.ica.2016.04.013
  26. Khannanov, A.A., Kutyreva, М.P., Ulakhovich, N.A., Gataulina, А.R., Bondar, О.V., Zakharova, L.Y., and Kutyrev, G.A., Fluid Phase Equilibria, 2016, vol. 411, p. 93. https://doi.org/10.1016/j.fluid.2015.12.023
  27. Kutyreva, M.P., Usmanova, G.Sh., Ulakhovich, N.A., Medvedeva, O.I., Syakaev, V.V., and Ziganshina, S.A., Polym. Sci. (B), 2013, vol. 55, nos. 3–4, p. 201. https://doi.org/10.1134/S1560090413040052
  28. Gataulina, A.R., Khannanov, A.A., Malinovskikh, O.A., Bondar, O.V., Ulakhovich, N.A., and Kutyreva, M.P., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2269. https://doi.org/10.1134/S1070363213120074
  29. Gataulina, A.R., Khasanova, E.M., Ulakhovich, N.A., Kutyrev, G.A., and Kutyreva, M.P., Russ. J. Gen. Chem., 2018, vol. 88, no. 9, p. 1874. https://doi.org/10.1134/S1070363218090189
  30. Kutyreva, M.P., Gataulina, A.R., Kutyrev, G.A., Nizamov, I.S., and Ulakhovich, N.A., Russ. J. Gen. Chem., 2011, vol. 81, no. 7, p. 1535. https://doi.org/10.1134/S1070363211070206
  31. Bellamy, L.J., The Infrared Spectra of Complex Molecules Volume Two Advances in Infrared Group Frequencies, London: Methuen Inc., Chapman and Hall, 1980. https://doi.org/10.1007/978-94-011-6520-4
  32. Toroptseva, A.M., Belogorodskaya, K.V., and Bondarenko, V.M., Laboratornyi praktikum po khimii i tekhnologii vysokomolekulyarnykh soedinenii (Laboratory Workshop on Chemistry and Technology of High-Molecular Compounds), Leningrad: Khimiya, 1972, p. 127.
  33. Kutyreva, M.P., Ulakhovich, N.A., Sidorov, P.O., Kutyrev, G.A., Gataulina, A.R., and Salnikov, Yu.I., World Appl Sci. J., 2013, vol. 26, no. 7, p. 973. https://doi.org/10.5829/idosi.wasj.2013.26.07.13533
  34. Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: John Wiley and Sons Inc., 1970. https://doi.org/10.1002/bbpc.19710750622
  35. Kacan, M., Turkyilmaz, M., Karabulut, F., Altun, O., and Baran, Y., Spectrochim. Acta (A), 2014, vol. 118, p. 572. https://doi.org/10.1016/j.saa.2013.09.031
  36. Basha, M.T., Alghanmi, R.M., Shehata, M.R., Abdel-and Rahman, L.H., J. Mol. Struct., 2019, vol. 1183, p. 298. https://doi.org/10.1016/j.molstruc.2019.02.001
  37. Lever, A.B.P., Inorganic Electronic Spectroscopy in Studies in Physical and Theoretical Chemistry, Amsterdam: Elsevier, 1984. 863 p. https://doi.org/10.1002/bbpc.19850890122
  38. Volchenskova, I.I., Teor. Eksp. Khim., 1973, vol. 9, no. 5, p. 627.
  39. Rybak-Akimova, E.V., Nazarenko, A.Y., Chen, L., Krieger, P.W., Herrera, A.M., Tarasov, V.V., and Robinson, P.D., Inorg. Chim. Acta, 2001, vol. 324, nos. 1–2, p. 1. https://doi.org/10.1016/S0020-1693(01)00495-9
  40. Kokorin, A.I., Vengerova, N.A., Kirsh, Yu.E., and Zamaraev, K.I., Dokl. Akad. Nauk SSSR, 1972, vol. 202, no. 3, p. 597.
  41. Kirsh, Yu.E., Kovner, V.Ya., Kokorin, A.I., Zamaraev, K.I., Chernyak, V.Ya., and Kabanov, V.A., Eur. Polym. J., 1974, vol. 10, no. 8, p. 671. https://doi.org/10.1016/0014-3057(74)90178-5
  42. Pilbrow, J.R., Transition Ion Electron Paramagnetic Resonance, Oxford: Clarendon Press, 1990. https://doi.org/10.1002/bbpc.19910951036
  43. Peisach, J. and Blumberg, W.E., Arch. Biochem. Biophys., 1974, vol. 165, no. 2, p. 691. https://doi.org/10.1016/0003-9861(74)90298-7
  44. Sakaguchi, U., Addison, A.W., J. Chem. Soc. Dalton Trans., 1979, no. 4, p. 600. https://doi.org/10.1039/DT9790000600
  45. Lewis, W.B., Alei, M.Jr., and Morgan, L.O., J. Chem. Phys., 1966, vol. 44, no. 6, p. 2409. https://doi.org/10.1063/1.1727057
  46. Beck, M. and Nagypál, I., Chemistry of Complex Equilibria, Budapest: Akadémiai Kiadó, 1990. https://doi.org/10.1002/prac.19913330133