Statistical theory of turbulent mass transfer in electrochemical systems

S. A. MartemianovS. A. Martemianov
Российский электрохимический журнал
Abstract / Full Text

The paper presents an overview of the statistical theory of turbulent mass transfer in electrochemical systems and some new results which generalize the previously obtained relations for the flows of complex geometry. The developed theory does not use traditional semi-empirical hypotheses and analogies, but directly addresses to the solving of the critical for turbulent transfer the closure problem. The mathematical procedure for solving of the closure problem makes use of new equations for the correlations between concentration and velocity fluctuations in different space points and at different time moments; the dumping of turbulent pulsations in the viscous sublayer allows to neglect high order moments and obtain a closed equation for the turbulent mass flux. In general, the relation between the turbulent mass flux and the mean concentration gradient is non-local. Using available experimental information, the non-local equation for the turbulent mass flux is reduced to the traditional local one and the functional form of the turbulent diffusion coefficient is obtained. It is demonstrated that Reynolds analogy cannot been used for the prediction of the turbulent diffusivity. Applications of the developed theory to chemical engineering and to electrochemical flow diagnostics (prediction of flow characteristics using limiting diffusion current measurements) are discussed.

Author information
  • Institut Pprime UPR 3346 CNRS, University of Poitiers, ENSMA, Bâtiment 25, 3ème étage Campus Sud, 6, rue Marcel Dore, F86022, Poitiers cedex, FranceS. A. Martemianov
  1. Levich, V.G., Physicochemical Hydrodynamics, Prentice-Hall: Englewood Cliffs, NJ, 1962.
  2. Pleskov, Yu.V. and Filinovski, V.Yu., Rotating Disc Electrode, Moscow: Nauka, 1972.
  3. Newman, J.J., Newman, J., and Thomas-Alyea, K.E., Electrochemical Systems, John Wiley & Sons Inc., 2004.
  4. Bockris, J.O.M., Reddy, A.K.N., and Gamboa-Aldeco, M., Modern Electrochemistry, 2nd ed., Vol. 2A: Fundamentals of Electrodics, Kluwer Acad., 2000.
  5. Ngo Boum, G.B., Martemianov, S., and Alemany, A., Computational study of laminar flow and mass transfer around a surface-mounted obstacle, Int. J. Heat Mass Transfer, 1999, vol. 42, pp. 2849–2861.
  6. Martemianov, S. and Okulov, V.L., Mass transfer ambiguities in swirling pipe flows, J. Appl. Electrochem., 2002, vol. 32, no. 1, pp. 25–34.
  7. Monin, A.C. and Yaglom, A.M., Statistical Hydromechanics. Mechanics of Turbulence, vols. 1, 2, Moscow: Nauka, 1965.
  8. Deissler, R.G., Analysis of multipoint-multitime correlations and diffusion in decaying homogeneous turbulence, Nat. Aeronaut. Space Adm., Tech. Rep. R.-96, 1961.
  9. Kraichnan, R., Lagrangian-history close approximation for turbulence, Phys. Fluids, 1965, vol. 8, p. 575.
  10. Martem’yanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Derivation of the nonlocal transport equation of matter in the turbulent diffusion layer, Sov. Electrochem., 1979, vol. 15, no. 6, pp. 787–790.
  11. Martem’yanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Functional form of the turbulent diffusion coefficient in the layer next to the electrode, Sov. Electrochem., 1979, vol. 15, no. 6, pp. 790–795.
  12. Grafov, B.M., Martemianov, S.A., and Nekrasov, L.N., The Turbulent Diffusion Layer in Electrochemical Systems, Moscow: Nauka, 1990.
  13. Vorotyntsev, M.A., Martem’yanov, S.A., and Grafov, B.M., Closed equation of turbulent heat and mass transfer, J. Exp. Theor. Phys., 1980, vol. 79, no. 5, pp. 1797–1808.
  14. Martem’yanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Spread of the diffusion boundary layer along the electrode under turbulent flow conditions, Sov. Electrochem., 1980, vol. 16, no. 5, pp. 612–615.
  15. Martem’yanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Turbulent mass and heat transport at the imput region of a flat electrode with large Prandtl-Schmidt numbers, Sov. Electrochem., 1980, vol. 16, no. 6, pp. 731–734.
  16. Martemyanov, S., Legrand, J., and Skurygin, E.F., Turbulent mass transfer in the developing diffusion layer at large Schmidt numbers, Int. J. Heat Mass Transfer, 1999, vol. 42, pp. 2357–2362
  17. Mitchell, J.E. and Hanratty, T.J., J. Fluid Mech., 1966, vol. 26, pp. 199–211.
  18. Nakoryakov, V.E., Burdukov, A.P., Kashinsky, O.N., and Geshev, P.I., Electrodiffusion Method of Investigation into the Local the Local Structure of Turbulent Flows, Novosibirsk: Nauka, 1986.
  19. Pokryvailo, N.A., Wein, O., and Kovalevskaia, N.D., Electrodiffusion Diagnostics of Polymer and Suspension Flows, Minsk: Nauka i Tekhnika, 1988.
  20. Alekseenko, S.V., Naroryakov, V.E., and Pokusaev, B.G., Wave Flow of Liquid Films, Novosibirsk: Nauka, 1992.
  21. Chaal, L., Albinet, B., Deslouis, C., Al-Janabi, Y.T., Pailleret, A., Boualem Saidani, and Schmitt, G., Wall shear stress mapping in the rotating cage geometry and evaluation of drag reduction efficiency using an electrochemical method, Corrosion Sci., 2009, vol. 51, no. 8, pp. 1809–1816.
  22. Dumas, T., Lesage, F., Sobolik, V., and Latifi, M.A., Local flow direction measurements using tri-segmented microelectrode in packed beds, Chem. Eng. Res. Design, 2009, vol. 87, pp. 962–966.
  23. Sodjavi, K., Montagné, B., Bragança, P., Meslem, A., Byrne, P., Degouet, C., and Sobolik, V., PIV and electrodiffusion diagnostics of flow field, wall shear stress and mass transfer beneath three round submerged impinging jets, Exp. Therm. Fluid Sci., 2016, vol. 70, pp. 417–436.
  24. Kristiawan, M., Sodjavi, K., Montagné, B., Meslem, A., and Sobolik, V., Mass transfer and shear rate on a wall normal to an impinging circular jet, Chem. Eng. Sci., 2015, vol. 132, pp. 32–45.
  25. Fourrié, G., Keirsbulck, L., and Labraga, L., Wall shear stress characterization of a 3D bluff-body separated flow, J. Fluids Structures, 2013, vol. 42, pp. 55–69.
  26. Barbier, F., Alemany, A., and Martemianov, S., On the influence of a high magnetic field on the corrosion and deposition processes in the liquid Pb-17Li alloy, Fusion Eng. Design, 1998, vol. 43, pp. 199–208.
  27. Kashinsky, O.N., Lobanov, P.D., Pakhomov, M.A., Randin, V.V., and Terekhov, V.I., Experimental and numerical study of downward bubbly flow in a pipe, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 3717–3727.
  28. Deissler, R., Nat. Aeronaut. Space Adm., Tech. Rep., 1959, no. 1210.
  29. Hanratty, T.J., Phys. Fluids Suppl., 1967, pp. 126–133.
  30. Deslouis, C., Tribollet, B., and Tihon, J., Near-wall turbulence in drag reducing flows investigated by the photolithography-electrochemical probes, J. Non-Newtonian Fluid Mech., 2004, vol. 123, pp. 141–150.
  31. Keirsbulck, L., Labraga, L., and Gad-el-Hak, M., Statistical properties of wall shear stress fluctuations in turbulent channel flows, Int. J. Heat Fluid Flow, 2012, vol. 37, pp. 1–8.
  32. Dib, A. and Martemianov, S., On similitude of near wall turbulence in viscous sublayer, Russ. J. Electrochem., 2011, vol. 47, no. 9, pp. 980–987.
  33. Skurygin, E.F., Martemyanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Calculations of frequent characteristics of the microelectrode turbulent diffusion layer, Sov. Electrochem., 1989, vol. 25, no. 6, pp. 685–688.
  34. Deslouis, C., Gill, O., and Tribollet, B., Frequency response of electrochemical sensors to hydrodynamic fluctuations, J. Fluid. Mech., 1990, vol. 215, pp. 85–96.
  35. Dib, A., Martemianov, S., Makhloufi, L., and Saidani, B., Calibration of electrodiffusion probes for turbulent flow measurements, Flow Measurement Instrumentation, 2014, vol. 32, pp. 76–83.
  36. Rehimi, F., Aloui, F., Ben Nasrallah, S., Doubliez, L., and Legrand, J., Inverse method for electrodiffusional diagnostics of flows, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 1242–1254.
  37. Berrich, E., Aloui, F., and Legrand, J., Experimental validation and critical analysis of inverse method in mass transfer using electrochemical sensor, Exp. Therm. Fluid Sci., 2013, vol. 44, pp. 253–263.
  38. Vorotyntsev, M.A., Martemyanov, S.A., and Grafov, B.M., Temporal correlation of current pulsations at one or several electrodes; a technique to study hydrodynamic fluctuation characteristics of a turbulent flow, J. Electroanal. Chem., 1984, vol. 179, pp. 1–23.
  39. Martemyanov, S.A., Correlation of the current-density fluctuations in a stationary diffusion layer which is homogeneous in the transverse direction but evolves along the flow, Sov. Electrochem., 1985, vol. 21, no. 6, pp. 783–786.
  40. Martemyanov, S.A., Correlation on the current fluctuations during turbulent electrolyte flow past electrodes, Sov. Electrochem., 1985, vol. 21, no. 7, pp. 883–787.
  41. Skurygin, E.F., Martemyanov, S.A., and Vorotyntsev, M.A., Space-time fluctuations of a passive impurity concentration within the diffusion boundary layer in the turbulent fluid flow, J. Electroanal. Chem., 1989, vol. 259, pp. 285–293.
  42. Skurygin, E.F., Vorotyntsev, M.A., and Martemyanov, S.A., Pulsations of passive impurity within diffusion layer under turbulent liquid flow conditions, Sov. Electrochem., 1989, vol. 25, no. 5, pp. 588–592.
  43. Skurygin, E.F., Vorotyntsev, M.A., and Martemyanov, S.A., Current density pulsations within turbulent diffusion layer of constant thickness, Sov. Electrochem., 1989, vol. 25, no. 5, pp. 593–598.
  44. Martemyanov, S.A., Skurygin, E.F., and Grafov, B.M., Mutual spectrum of turbulent noises of long electrodes at constant diffusion layer conditions: The nonlinear effects, Russ. J. Electrochem., 1996, vol. 32, no. 12, pp. 1301–1306.
  45. Martemyanov, S.A., Applicability of electrodiffusion diagnostics in quantitative verification of the statistical theory of turbulent mass transfer, Sov. Electrochem., 1993, vol. 29, no. 1, pp. 110–112.
  46. Martemianov, S. and Danaila, L., On the study of electrochemical turbulent noise in a stirred vessel, Fluctuations Noise Lett., 2003, vol. 3, no. 4, pp. L463–L471.
  47. Adolphe, X., Danaila, L., and Martemianov, S., On the small-scale statistics of turbulent mixing in electrochemical systems, J. Electroanalyt. Chem., 2007, vol. 600, pp. 119–130.
  48. Martemianov, S., Pallares, J., and Grau, X.F., Comparative study of turbulent mass transfer in the viscous sublayer using electrochemical method and direct numerical simulations, Russ. J. Electrochem., 2012, vol. 48, no. 8, pp. 810–816.