Examples



mdbootstrap.com



 
Статья
2022

Experimental enthalpies of formation and other physicochemical characteristics of compounds containing C-NO2 and C-N(O)=N-NO2 groups: a comparison


N. E. LeonovN. E. Leonov, M. S. KlenovM. S. Klenov, V. A. TartakovskyV. A. Tartakovsky
Российский химический вестник
https://doi.org/10.1007/s11172-022-3572-5
Abstract / Full Text

The standard enthalpies of formation of nitro-NNO-azoxy compounds including nitro-NNO-azoxybenzene (2), 3-nitro-4-{[4-(nitro-NNO-azoxy)furazan-3-yl]-NNO-azoxy}-furazan (4), and bis-4,4′-(nitro-NNO-azoxy)-3,3′-azofurazan (6), as well as those of nitro compounds including 3-nitro-4-[(4-nitrofurazan-3-yl)-NNO-azoxy]furazan (3) and 4,4′-dinitro-3,3′-azofurazan (5) were determined by combustion calorimetry. It was shown that replacement of nitro group by nitro-NNO-azoxy group in the benzene and furazan rings causes the enthalpies of formation of the nitro-NNO-azoxy compounds to increase by 49–57 kcal mol−1 (on the average, by 52 kcal mol−1 per nitro-NNO-azoxy group introduced). According to the detonation velocity and detonation pressure calculations for compounds 3–6, the energetic characteristics of nitro-NNO-azoxyfurazans 4 and 6 approach those of hexanitrohexaazaisowurtzitane (CL-20), being much better than those of nitrofurazans 3 and 5.

Author information
  • N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian FederationN. E. Leonov, M. S. Klenov, A. M. Churakov & V. A. Tartakovsky
  • N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 119991, Moscow, Russian FederationT. S. Konkova, E. A. Miroshnichenko, Yu. N. Matyushin & N. V. Muravyev
References
  1. O. T. O’Sullivan, M. J. Zdilla, Chem. Rev., 2020, 120, 5682; DOI: https://doi.org/10.1021/acs.chemrev.9b00804.
  2. S. G. Zlotin, A. M. Churakov, M. P. Egorov, L. L. Fershtat, M. S. Klenov, I. V. Kuchurov, N. N. Makhova, G. A. Smirnov, Yu. V. Tomilov, V. A. Tartakovsky, Mendeleev Commun., 2021, 31, 731; DOI: https://doi.org/10.1016/j.mencom.2021.11.001.
  3. H. Gao, Q. Zhang, J. M. Shreeve, J. Mater. Chem. A, 2020, 8, 4193; DOI: https://doi.org/10.1039/C9TA12704F.
  4. S. G. Zlotin, I. L. Dalinger, N. N. Makhova, V. A. Tartakovsky, Russ. Chem. Rev., 2020, 89, 1; DOI: https://doi.org/10.1070/RCR4908.
  5. D. E. Chavez, Top. Heterocycl. Chem., 2017, 1; DOI: https://doi.org/10.1007/7081_2017_5.
  6. N. E. Leonov, S. E. Semenov, M. S. Klenov, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, I. V. Fedyanin, D. B. Lempert, T. S. Kon’kova, Yu. N. Matyushin, V. A. Tartakovsky, Mendeleev Commun., 2021, 31, 789; DOI: https://doi.org/10.1016/j.mencom.2021.11.006.
  7. N. E. Leonov, M. S. Klenov, O. V. Anikin, A. M. Churakov, Y. A. Strelenko, A. A. Voronin, D. B. Lempert, N. V. Muravyev, I. V. Fedyanin, S. E. Semenov, V. A. Tartakovsky, ChemistrySelect, 2020, 5, 12243; DOI: https://doi.org/10.1002/slct.202003182.
  8. N. E. Leonov, F. M. Sidorov, M. S. Klenov, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, I. V. Fedyanin, D. B. Lempert, T. S. Kon’kova, Yu. N. Matyushin, E. A. Miroshnichenko, V. A. Tartakovsky, Mendeleev Commun., 2021, 31, 792; DOI: https://doi.org/10.1016/j.mencom.2021.11.007.
  9. O. A. Luk’yanov, V. V. Parakhin, Russ. Chem. Bull., 2012, 61, 1582; DOI: https://doi.org/10.1007/s11172-012-0210-7.
  10. T. V. Ternikova, G. V. Pokhvisneva, O. A. Luk’yanov, Russ. Chem. Bull., 2020, 69, 2349; DOI: https://doi.org/10.1007/s11172-020-3031-0.
  11. G. A. Smirnov, O. A. Luk’yanov, Russ. Chem. Bull., 2020, 69, 295; DOI: https://doi.org/10.1007/s11172-020-2759-x.
  12. I. N. Zyuzin, Russ. Chem. Bull., 2020, 69, 1949; DOI: https://doi.org/10.1007/s11172-020-2984-3.
  13. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, Y. A. Strelenko, I. V. Fedyanin, D. B. Lempert, N. V. Muravyev, T. S. Kon’kova, Y. N. Matyushin, V. A. Tartakovsky, RSC Advances, 2021, 11, 24013; DOI: https://doi.org/10.1039/D1RA03919A.
  14. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 1599; DOI: https://doi.org/10.1007/s11172-021-3256-6.
  15. Patent RU 2756321, Inventor’s Bull., No. 28, 2021; date of publication 29.09.2021.
  16. A. A. Konnov, I. M. Dubrovin, M. S. Klenov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 2189; DOI: https://doi.org/10.1007/s11172-021-3331-z.
  17. A. O. Dmitrienko, A. A. Konnov, M. S. Klenov, Powder Diffr, 2021, 36, 134; DOI: https://doi.org/10.1017/S0885715621000208.
  18. A. O. Dmitrienko, A. A. Konnov, M. S. Klenov, Powder Diffr, 2021, 36, 176; DOI: https://doi.org/10.1017/S0885715621000233.
  19. Y. Wang, S. Li, Y. Li, R. Zhang, D. Wang, S. Pang, J. Mater. Chem. A, 2014, 2, 20806; DOI: https://doi.org/10.1039/C4TA04716H.
  20. A. M. Churakov, S. L. Ioffe, V. A. Tartakovsky, Mendeleev Commun., 1996, 6, 20; DOI: https://doi.org/10.1070/MC1996v006n01ABEH000560.
  21. A. M. Churakov, S. E. Semenov, S. L. Ioffe, Y. A. Strelenko, V. A. Tartakovsky, Russ. Chem. Bull., 1997, 46, 1042; DOI: https://doi.org/10.1007/BF02496149.
  22. N. E. Leonov, M. S. Klenov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, K. A. Monogarov, V. A. Tartakovsky, Eur. J. Org. Chem., 2019, 1, 91; DOI: https://doi.org/10.1002/ejoc.201801533.
  23. A. B. Sheremetev, S. E. Semenov, V. S. Kuzmin, Y. A. Strelenko, S. L. Ioffe, Chem. Eur. J., 1998, 4, 1023; DOI: https://doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1023::AID-CHEM1023>3.0.CO;2-R.
  24. H. Li, B. Z. Wang, X. Z. Li, J. F. Tong, W. P. Lai, X. Z. Fan, Bull. Korean Chem. Soc., 2013, 34, 686; DOI: https://doi.org/10.5012/bkcs.2013.34.2.686.
  25. H. Li, F. Q. Zhao, Q. Q. Yu, W. P. Lai, B. Z. Wang, Chin. J. Energ. Mater., 2014, 22, 880; DOI: https://doi.org/10.11943/j.issn.1006-9941.2014.06.032.
  26. O. V. Anikin, N. E. Leonov, M. S. Klenov, A. M. Churakov, A. A. Voronin, A. A. Guskov, N. V. Muravyev, Yu. A. Strelenko, I. V. Fedyanin, V. A. Tartakovsky, Eur. J. Org. Chem., 2019, 26, 4189; DOI: https://doi.org/10.1002/ejoc.201900314.
  27. M. S. Klenov, N. E. Leonov, A. A. Guskov, A. M. Churakov, Yu. A. Strelenko, V. A. Tartakovsky, Russ. Chem. Bull., 2019, 68, 1798; DOI: https://doi.org/10.1007/s11172-019-2628-7.
  28. W. P. Lai, P. Lian, Y. Z. Liu, T. Yu, W. L. Zhu, Z. X. Ge, J. Lv, J. Mol. Model., 2014, 20, 2479; DOI: https://doi.org/10.1007/s00894-014-2479-y.
  29. P. Lian, W. P. Lai, Z. X. Ge, B. Z. Wang, X. J. Wang, Chinese J. Explos. Propel., 2014, 37, 50; DOI: 1007-7812(2014)04-0050-04.
  30. A. Gunasekaran, M. L. Trudell, J. H. Boyer, Heteroat. Chem., 1994, 5, 441; DOI: https://doi.org/10.1002/hc.520050505.
  31. A. K. Zelenin, M. L. Trudell, R. D. Gilardi, J. Heterocycl. Chem., 1998, 35, 151; DOI: https://doi.org/10.1002/jhet.5570350128.
  32. CODATA Key Values for Thermodynamics. Final Report of the CODATA. Task Group on Key Values for Thermodynamics, Eds J. D. Cox, D. D. Wagman, V. A. Medvedev, Hemisphere Publishing Corporation, New York—Washington—Philadelphia-London, 1989.
  33. M. A. Suntsova, O. V. Dorofeeva, J. Chem. Eng. Data, 2016, 61, 313; DOI: https://doi.org/10.1021/acs.jced.5b00558.
  34. A. B. Sheremetev, V. O. Kulagina, N. S. Aleksandrova, D. E. Dmitriev, Yu. A. Strelenko, V. P. Lebedev, Yu. N. Matyushin, Propellants, Explos., Pyrotech., 1998, 23, 142; DOI: https://doi.org/10.1002/(SICI)1521-4087(199806)23:3<142::AID-PREP142>3.0.CO;2-X.
  35. N. V. Muravyev, D. B. Meerov, K. A. Monogarov, I. N. Melnikov, E. K. Kosareva, L. L. Fershtat, A. B. Sheremetev, I. L. Dalinger, I. V. Fomenkov, A. N. Pivkina, Chem. Eng. J., 2021, 421, 129804; DOI: https://doi.org/10.1016/j.cej.2021.129804.
  36. O. A. Luk’yanov, V. V. Parakhin, N. I. Shlykova, A. O. Dmitrienko, E. K. Melnikova, T. S. Kon’kova, K. A. Monogarov, D. B. Meerov, New J. Chem., 2020, 44, 8357; DOI: https://doi.org/10.1039/d0nj01453b.
  37. A. A. Larin, D. M. Bystrov, L. L. Fershtat, A. A. Konnov, N. N. Makhova, K. A. Monogarov, D. B. Meerov, I. N. Melnikov, A. N. Pivkina, V. G. Kiselev, N. V. Muravyev, Molecules, 2020, 25, 5836; DOI: https://doi.org/10.3390/molecules25245836.
  38. V. I. Pepekin, Yu. N. Matyushin, T. V. Gubina, Russ. J. Phys. Chem. B, 2011, 5, 97; DOI: https://doi.org/10.1134/S1990793111020102.
  39. N. V. Muravyev, D. R. Wozniak, D. G. Piercey, J. Mater. Chem. A, 2022, 10, 11054; DOI: https://doi.org/10.1039/D2TA01339H.
  40. Standardization Agreement 4489 (STANAG 4489), Explosives, IS Tests, NATO, Brussels, 1999.
  41. Standardization Agreement 4487 (STANAG 4487), Explosives, Impact Sensitivity Tests, NATO, Brussels, 2002.
  42. Ya. O. Inozemtsev, A. B. Vorobyev, A. V. Inozemtsev, Yu. N. Matyushin, Combustion and Explosion, 2014, 7, 260 (in Russian).
  43. T. S. Kon’kova, Yu. N. Matyushin, E. A. Miroshnichenko, A. B. Vorob’ev, Russ. Chem. Bull., 2009, 58, 2020; DOI: https://doi.org/10.1007/s11172-009-0276-z.