Abstract / Full Text

Anodic oxidation of aluminum in acidic electrolytes is widely used for the formation of porous oxide films with a regular structure on the metal surface. Despite the century-old history of this process, the mechanism of channel ordering into a 2D hexagonal array is still not entirely clear. This work studies the modes of porous oxide film formation in 0.3 M oxalic acid at the anodizing voltages of 20 to 130 V and in 0.3 M sulfuric acid in the range of 19 to 60 V. The mass fraction of electrolyte impurities in the anodic aluminum oxide (AAO) structure, the formation efficiency, the volume expansion factor of the material in anodizing, and oxide film porosity are determined for the given conditions. The wide range of applied anodizing voltages allowed establishing a relationship between the degree of ordering of porous structures and the formation efficiency of anodic alumina and volume expansion of the material.

Author information
  • Department of Materials Science, Moscow State University, Moscow, 119991, Russia

    E. O. Gordeeva, I. V. Roslyakov, D. I. Petukhov, T. B. Shatalova & K. S. Napolskii

  • Department of Chemistry, Moscow State University, Moscow, 119991, Russia

    I. V. Roslyakov, A. I. Sadykov, T. A. Suchkova, D. I. Petukhov, T. B. Shatalova & K. S. Napolskii

  1. Bengough, G.D. and Stuart, J.M., Improved process of protecting surfaces of aluminium of aluminium alloys, UK Patent 223994, 1923.
  2. Bengough, G.D. and Stuart, J.M., A process of producing a colored surface on aluminium or aluminium alloys, UK Patent 223995, 1924.
  3. Masuda, H. and Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 1995, vol. 268, no. 5216, p. 1466.
  4. Lee, W. and Park, S.J., Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev., 2014, vol. 114, no. 15, p. 7487.
  5. Sulka, G.D., Nanostructured materials in electrochemistry, W.: WILEY-VC, 2008, pp. 1–116.
  6. Valeev, R.G., Deev, A.N., Beltyukov, A.N., Romanov, E.A., Kriventsov, V.V., Mezentsev, N.A., Eliseev, A.A., and Napolskii, K.S., Synthesis and structure study of ordered arrays of ZnSe nanodots, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2010, vol. 4, no. 4, p. 645.
  7. Vorobyova, A.I., Utkina, E.A., and Komar, O.M., Homogeneous deposition of nickel in pores of the ordered thin aluminum oxide, Russ. Microelectron., 2013, vol. 42, no. 2, p. 79.
  8. Bograchev, D.A., Davydov, A.D., and Volgin, V.M., Modeling of metal electrodeposition in the pores of anodic alumina oxide, Russ. J. Electrochem., 2015, vol. 51, no. 9, p. 799.
  9. Baryshnikov, S.V., Milinskii, A.Y., Charnaya, E.V., Tien, C., and Stukova, E.V., Dielectric studies of nanopous alumina films filled with the Rochelle salt, Phys. Solid State, 2010, vol. 52, no. 7.
  10. Shelkovnikov, V.V., Lyubas, G.A., and Korotaev, S.V., Enhanced reflective interference spectra of nanoporous anodic alumina films by double electrochemical deposition of chemical metal nanoparticles, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 2, p. 227.
  11. Atrashchenko, A.V., Krasilin, A.A., Kuchuk, I.S., Aryslanova, E.M., Chivilikhin, S.A., and Belov, P.A., Electrochemical methods of synthesis of hyperbolic metamaterials, Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 3, p. 31.
  12. Petukhov, D.I., Eliseev, A.A., Buldakov, D.A., Napol’skii, K.S., Lukashin, A.V., Tret’yakov, Yu.D., and Yampol’skii, Yu.P., Anodic aluminum oxide: membranes with controlled gas penetrability, Membrany, 2009, vol. 3, no. 43, p. 16.
  13. Lira, H. and Paterson, R., New and modified anodic alumina membranes: Part III. Preparation and characterisation by gas diffusion of 5 nm pore size anodic alumina membranes, J. Membr. Sci., 2002, vol. 206, nos. 1–2, p. 375.
  14. Buldakov, D.A., Petukhov, D.I., Borodinov, N.S., and Eliseev, A.A., Anodic aluminum oxide membranes for dialysis processes, Al’tern. Energ. Ekol., 2013, no. 8 (130), p. 101.
  15. Gudkov, V.A., Vedeneev, A.S., Rylkov, V.V., Temiryazeva, M.P., Kozlov, A.M., Nikolaev, S.N., Pankov, M.A., Golovanov, A.N., Semisalova, A.S., Perov, N.S., Dukhnovskii, M.P., and Bugaev, A.S., Synthesis of spatially ordered ensemble of Co nanocylinders in porous alumina matrix on surface of GaAs structures, Tech. Phys. Lett., 2013, vol. 39, no. 9, p. 805.
  16. Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Lukashin, A.V., Lebedev, V.A., Itkis, D.M., and Tretyakov, Yu.D., Calibration gratings based on selfassembled anodic alumina porous films, Al’tern. Energ. Ekol., 2009, vol. 79, no. 11, p. 86.
  17. Roslyakov, I.V., Napolskii, K.S., Evdokimov, P.V., Napolskii, F.S., Dunaev, A.V., Eliseev, A.A., Lukashin, A.V., and Tretyakov, Yu.D., Thermal properties of anodic alumina membranes, Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 1, p. 120.
  18. Roslyakov, I.V., Kolesnik, I.V., Napolskii, K.S., Karelin, A.P., Mironov, S.M., Stolyarov, V.S., Surtaev, V.N., and Sayapin, O.A., Development of sensor technologies and technique of monotoring explosiveness of hydrocarbon–air mixtures, Nauchno-Tekh. Vestn. OAO NK “Rosneft”, 2015, vol. 4, p. 85.
  19. Roslyakov, I.V., Gordeeva, E.O., and Napolskii, K.S., Role of electrode reaction kinetics in self-ordering of porous anodic alumina, Electrochim. Acta, 2017, vol. 241, p. 362.
  20. Chen, W., Wu, J.S., and Xia, X.H., Porous anodic alumina with continuously manipulated pore/cell size, ACS Nano, 2008, vol. 2, no. 5, p. 959.
  21. Ono, S., Saito, M., and Asoh, H., Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta, 2005, vol. 51, no. 5, p. 827.
  22. Sun, C., Luo, J., Wu, L., and Zhang, J., Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm, ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 5, p. 1299.
  23. Kashi, M.A., Ramazani, A., Noormohammadi, M., Zarei, M., and Marashi, P., Optimum self-ordered nanopore arrays with 130–270 nm interpore distances formed by hard anodization in sulfuric/oxalic acid mixtures, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 22, p. 7032.
  24. Zaraska, L., Stpniowski, W.J., Ciepiela, E., and Sulka, G.D., The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid, Thin Solid Films, 2013, vol. 534, p. 155.
  25. Stepniowski, W.J., Nowak-Stepniowska, A., Michalska-Domanska, M., Norek, M., Czujko, T., and Bojar, Z., Fabrication and geometric characterization of highlyordered hexagonally arranged arrays of nanoporous anodic alumina, Pol. J. Chem. Technol., 2014, vol. 16, no. 1, p. 63.
  26. Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Byelov, D.V., Petukhov, A.V., Grigoryeva, N.A., Bouwman, W.G., Lukashin, A.V., Chumakov, A.P., and Grigoriev, S.V., The kinetics and mechanism of longrange pore ordering in anodic films on aluminum, J. Phys. Chem. C, 2011, vol. 115, no. 48, p. 23726.
  27. Napolskii, K.S., Roslyakov, I.V., Romanchuk, A.Y., Kapitanova, O.O., Mankevich, A.S., Lebedev, V.A., and Eliseev, A.A., Origin of long-range orientational pore ordering in anodic films on aluminium, J. Mater. Chem., 2012, vol. 22, no. 24, p. 11922.
  28. Roslyakov, I.V., Eliseev, A.A., Yakovenko, E.V., Zabelin, A.V., and Napolskii, K.S., Longitudinal pore alignment in anodic alumina films grown on polycrystalline metal substrates, J. Appl. Crystallogr., 2013, vol. 46, no. 6, p. 1705.
  29. Roslyakov, I.V., Koshkodaev, D.S., Eliseev, A.A., Hermida-Merino, D., Petukhov, A.V., and Napolskii, K.S., Crystallography–induced correlations in pore ordering of anodic alumina films, J. Phys. Chem. C, 2016, vol. 120, no. 35, p. 19698.
  30. Le Cos, F., Arurault, L., and Datas, L., Chemical analysis of a single basic cell of porous anodic aluminium oxide templates, Mater. Charact., 2010, vol. 61, no. 3, p. 283.
  31. Davies, J.A., Domeij, B., Pringle, J.P.S., and Brown, F., The migration of metal and oxygen during anodic film formation, J. Electrochem. Soc., 1965, vol. 112, p. 675.
  32. Shimizu, K., Direct observations of ion–implanted xenon marker layers in anodic barrier films on aluminium, Thin Solid Films, 1982, vol. 88, no. 3, p. 255.
  33. Osullivan, J.P. and Wood, G.C., The morphology and mechanism of formation of porous anodic films on aluminium, Proc. R. Soc. London, Ser. A, 1970, vol. 317, no. 1531, p. 511.
  34. Hebert, K.R., Albu, S.P., Paramasivam, I., and Schmuki, P., Morphological instability leading to formation of porous anodic oxide films, Nat. Mater., 2012, vol. 11, no. 2, p. 162.
  35. Thompson, G., Skeldon, P., Shimizu, K., and Wood, G., The compositions of barrier-type anodic films formed on aluminium in molybdate and tungstate electrolytes, Philos. Trans. R. Soc., A, 1995, vol. 350, no. 1692, p. 143.
  36. Garcia-Vergara, S.J., Skeldon, P., Thompson, G.E., and Habakaki, H., Pore development in anodic alumina in sulphuric acid and borax electrolytes, Corros. Sci., 2007, vol. 49, no. 9, p. 3696.
  37. Jessensky, O., Muller, F., and Gosele, U., Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., 1998, vol. 72, no. 10, p. 1173.
  38. Liao, J., Ling, Z., Li, Y., and Hu, X., The role of stress in the self-organized growth of porous anodic alumina, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 12, p. 8017.
  39. Vrublevsky, I., Parkoun, V., Sokol, V., Schreckenbach, J., and Marx, G., The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime, Appl. Surf. Sci., 2004, vol. 222, no. 215, p. 215.
  40. Nagayama, M. and Tamura, K., Dissolution of the anodic oxide film on aluminium in a sulphuric acid solution, Electrochim. Acta, 1967, vol. 12, no. 8, p. 1097.
  41. Mercier, D., Van Overmeere, Q., Santoro, R., and Proost, J., In-situ optical emission spectrometry during galvanostatic aluminum anodising, Electrochim. Acta, 2011, vol. 56, no. 3, p. 1329.
  42. Baron-Wiechec, A., Ganem, J.J., Garcia-Vergara, S.J., Skeldon, P., Thompson, G.E., and Vickridge, I.C., 18O tracer study of porous film growth on aluminum in phosphoric acid, J. Electrochem. Soc., 2010, vol. 157, no. 11, p. C399.
  43. Nishinaga, O., Kikuchi, T., Natsui, S., and Suzuki, R.O., Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing, Sci. Rep., 2013, vol. 3, p. 2748.
  44. Lee, W., Ji, R., Gosele, U., and Nielsch, K., Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat. Mater., 2006, vol. 5, no. 9, p. 741.
  45. Schneider, C., Rasband, W., and Eliceiri, K., NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 2012, vol. 9, no. 7, p. 671.
  46. www.eng.fnm.msu.ru/en/software/.
  47. Ebihara, K., Takahashi, H., and Nagayama, M., Structure and density of anodic oxide films formed on aluminum in oxalic acid solutions, J. Met. Finish. Soc. Jpn., 1983, vol. 34, no. 11, p. 548.
  48. Siejka, J. and Ortega, C., An 18O study of field-assisted pore formation in compact anodic oxide films on aluminum, J. Electrochem. Soc., 1977, vol. 124, no. 6, p. 883.
  49. Wu, Z., Richter, C., and Menon, L., A study of anodization process during pore formation in nanoporous alumina templates, J. Electrochem. Soc., 2007, vol. 154, no. 1, p. e8.
  50. Schwirn, K., Lee, W., Hillebrand, R., Steinhart, M., Nielsch, K., and Gosele, U., Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization, ACS Nano, 2008, vol. 2, no. 2, p. 302.
  51. Barber, C.B., Dobkin, D., and Huhdanpaa, H., The quickhull algorithm for convex hulls, ACM Trans. Math. Software, 1996, vol. 22, no. 4, p. 469.
  52. Vega, V., Garsia, J., Montero-Moreno, J.M., Hernando, B., Bachmann, J., Prida, V.M., and Nielsch, K., Unveiling the hard anodization regime of aluminum: insight into nanopores self-organization and growth mechanism, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 51, p. 28682.