Examples



mdbootstrap.com



 
Статья
2021

Microcrystalline Anti-Stokes Luminophores NaYF4 Doped with Ytterbium, Erbium, and Lutetium Ions


A. A. VidyakinaA. A. Vidyakina, D. A. ZheglovD. A. Zheglov, A. V. OleinikA. V. Oleinik, O. V. FreinkmanO. V. Freinkman, I. E. KolesnikovI. E. Kolesnikov, N. A. BogachevN. A. Bogachev, M. Yu. SkripkinM. Yu. Skripkin, A. S. MereshchenkoA. S. Mereshchenko
Российский журнал общей химии
https://doi.org/10.1134/S1070363221050145
Abstract / Full Text

Microcrystalline anti-Stokes luminophores NaY1–xyzYbxEryLuzF4 were obtained for the first time by hydrothermal synthesis. These compounds crystallize in the hexagonal crystal system, structural type β-NaYF4. It was found that the addition of a non-luminescent lutetium(III) ions results in up-conversion luminescence enhancement in more than 2 times upon 980 nm excitation.

Author information
  • St. Petersburg State University, 199034, St. Petersburg, RussiaA. A. Vidyakina, A. V. Oleinik, O. V. Freinkman, I. E. Kolesnikov, N. A. Bogachev, M. Yu. Skripkin & A. S. Mereshchenko
  • Sirius University of Science and Technology, 354340, Sochi, RussiaA. A. Vidyakina, D. A. Zheglov, N. A. Bogachev, M. Yu. Skripkin & A. S. Mereshchenko
  • D.I. Mendeleev Russian University of Chemical Technology, 125047, Moscow, RussiaA. V. Oleinik
  • ITMO University, 199034, St. Petersburg, RussiaO. V. Freinkman
References
  1. Grebenik, E., Nadort, A., Generalova, A., Nechaev, A., Sreenivasan, V., Khaydukov, E., Semchishen, V., Popov, A., Sokolov, V., Akhmanov, A., Zubov, V., Klinov, D., Panchenko, V., Deyev, S., and Zvyagin, A., J. Biomed. Opt., 2013, vol. 18, p. 076004-1. https://doi.org/10.1117/1.JBO.18.7.076004
  2. Auzel, F., Chem. Rev., 2004, vol. 4, p. 139. https://doi.org/10.1021/cr020357g
  3. Stepuk, A., Mohn, D., Grass, R., Zehndner, M., Kramer, K., Pelle, F., Ferrier, A., and Stark, W., Dent. Mater. J., 2012, vol. 28, p. 304. https://doi.org/10.1016/j.dental.2011.11.018
  4. Sui, J., Chen, Z., Liu, G., Dong, X., Yu, W., and Wang, J., J. Lumin., 2019, vol. 209, p. 357. https://doi.org/10.1016/j.jlumin.2019.01.046
  5. Klier, D.T. and Kumke, M.U., Opt. Mater., 2015, vol. 90, p. 200. https://doi.org/10.1021/jp5103548
  6. Kalinichev, A.A., Kurochkin, M.A., Kolomytsev, A.Y., Khasbieva, R.S., Kolesnikov, E.Y., Lähderanta, E., and Kolesnikov, I.E., Opt. Mater., 2019, vol. 90, p. 200. https://doi.org/10.1016/j.optamt.2019.02.035
  7. Vidyakina, A.A., Kolesnikov, I. E., Bogachev, N.A., Skripkin, M.Y., Tumkin, I.I., Lähderanta, E., and Mereshchenko, A.S., Materials, 2020, vol. 13, p. 3397. https://doi.org/10.3390/ma13153397
  8. Wang, Z., Tao, F.,Yao, L., Cai, W., and Li, X., J. Cryst. Growth, 2006, vol. 290, p. 296. https://doi.org/10.1016/j.jcrysgro.2006.01.012
  9. Liang, B.X., Wang, X., Zhuang, J., Peng, Q., and Li, Y., Adv. Funct. Mater., 2007, vol. 17, p. 2757. https://doi.org/10.1002/adfm.200600807
  10. Sui, Y., Tao, K., Tian, Q., and Sun, K., J. Phys. Chem., 2012, vol. 116, p. 1732. https://doi.org/10.1021/jp208780x
  11. Qian, H. and Zhang, Y., Langmuir, 2008, vol. 24, p. 12123. https://doi.org/10.1021/la802343f
  12. Ding, M., Lu, C., Cao, L., Ni, Y., and Xu, Z., Cryst. Eng. Commun., 2013, vol. 15, p. 8366. https://doi.org/10.1039/c3ce41427b
  13. Tong, L., Li, X., Hua, R., Li, X., Zheng, H., Sun, J., Zhang, J., Cheng, L., and Chen, B., J. Lumin., 2015, vol. 167, p. 386. https://doi.org/10.1016/j.jlumin.2015.07.017
  14. Yu, S., Gao, X., Jing, H., Zhao, J., and Su, H., Cryst. Eng. Commun.,. 2013, vol. 15, p. 10100. https://doi.org/10.1039/c3ce41857j
  15. Szefczyk, B., Roszaka, R., and Roszaka, S., RCS Adv., 2014, vol. 4, p. 22526. https://doi.org/10.1039/C4RA00211C
  16. Shannon, R.D., Acta Crystallogr. A, 1976, vol. 32, p. 751. https://doi.org/10.1107/S0567739476001551
  17. Kumke, M.U. and Klier, D.T., J. Mater. Chem. C, 2015, vol. 3, p. 11228. https://doi.org/10.1039/C5TC02218E
  18. Lage, M.M. and Matinaga, F.M., J. Appl. Phys., 2006, vol. 99, p. 053510. https://doi.org/10.1063/1.2177380
  19. Shi, F. and Zhao, Y., J. Mater. Chem., 2014, vol. 2, p. 2198. https://doi.org/10.1039/c3tc32303j
  20. Ofelt, G.S., J. Chem. Phys., 1962, vol. 37, p. 511. https://doi.org/10.1063/1.1701366
  21. Judd, B.R., Phys. Rev., 1962, vol. 127, p. 750. https://doi.org/10.1103/PhysRev.127.750
  22. Ju, Q., Liu, Y., Li, R., Liu, L., Luo, W., and Chen, X., J. Phys. Chem., 2009, vol. 113, p. 2309. https://doi.org/10.1021/jp809233p
  23. Li, D., Shao, Q., Dong, Y., and Jiang, J., J. Rare Earths, 2014, vol. 32, no. 11, p. 1032. https://doi.org/10.1016/S1002-0721(14)60179-4
  24. Beeby, A., Clarkson, I.M., Dickins, R.S., Faulkner, S., Parker, D., Royle, L., De Sousa, A.S., Williams, J.A.G., and Woods, M., J. Chem. Soc. Perkin Trans., 1999, vol. 2, p. 493. https://doi.org/10.1039/a808692c
  25. Kropp, J.L. and Windsor, M.W., J. Chem. Phys., 1965, vol. 42, p. 1599. https://doi.org/10.1063/1.1696166
  26. Tanaka, F., Kawasaki, Y., and Yamashita, S., J. Chem. Soc. Faraday Trans., 1988, vol. 84, p. 1083. https://doi.org/10.1039/F19888401083
  27. Jezowska-Trzebiatowska, B., Legendziewicz, J., and Strȩk, W., Inorg. Chim. Acta, 1984, vol. 95, p. 157. https://doi.org/10.1016/S0020-1693(00)94557-2
  28. Horrocks, W.D. and Sudnick, D.R., J. Am. Chem. Soc., 1979, vol. 101, p. 334. https://doi.org/10.1021/ja00496a010
  29. Gorbunov, A.O., Lindqvist-Reis, P., Mereshchenko, A.S., and Skripkin, M.Yu., J. Mol. Liq., 2017, vol. 240, p. 25. https://doi.org/10.1016/j.molliq.2017.04.136