Examples



mdbootstrap.com



 
Статья
2021

Effect of CTAB on the Oxidation of Furfural to Maleic Acid over Hierarchical CoAPO-5 Catalysts


Lijie ZhengLijie Zheng, Xueni SunXueni Sun, Jun WangJun Wang, Yang LuYang Lu, Hui ShaoHui Shao
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221020142
Abstract / Full Text

A series of hierarchical CoAPO-5 molecular sieves was hydrothermally synthesized using cetyltrimethylammonium bromide (CTAB) as the template. The structural properties of CoAPO-5 molecular sieves with different amount of CTAB, including AFI-0.10, AFI-0.25, AFI-0.35, AFI-0.45 and AFI-0.55 were all characterized by XRD, SEM, N2 adsorption-desorption and NH3-TPD. The catalytic performance of as-prepared CoAPO-5 molecular sieves for the oxidation of furfural to maleic acid was investigated. Research results indicated that the structure characteristics as well as the catalytic performances of CoAPO-5 molecular sieves were strongly affected by CTAB amount. Among those hierarchical CoAPO-5 catalysts, AFI-0.45 sample exhibited highest maleic acid yield of 85.9% at 60℃ after 3 h reaction. In addition, the stability of AFI-0.45 was proved persistent for subsequent cycles.

Author information
  • Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, ChinaLijie Zheng, Xueni Sun, Jun Wang, Yang Lu & Hui Shao
References
  1. Shi, S., Guo, H., and Yin, G., Catal. Commun., 2011, vol. 12, no. 8, pp. 731–733. https://doi.org/10.1016/j.catcom.2010.12.033
  2. Alonso-Fagúndez, N., Ojeda, M., Mariscal, R., Fierro, J.L.G., and Granados, M.L., J. Catal., 2017, vol. 348, pp. 265–275. https://doi.org/10.1016/j.jcat.2016.12.005
  3. Soták, T., Hronec, M., Gál, M., Dobročka, E., and Škriniarová, J., Catal Lett., 2017, vol. 147, pp. 2714–2723. https://doi.org/10.1007/s10562-017-2191-5
  4. Guo, H., and Yin, G., J. Phys. Chem. C, 2011, vol. 115, no. 35, pp. 17516–17522. https://doi.org/10.1021/jp2054712
  5. Xiang, X., Zhang, B., Ding, G., Cui, J., Zheng, H., and Zhu, Y., Catal. Commun., 2016, vol. 86, pp. 41–45. https://doi.org/10.1016/j.catcom.2016.08.013
  6. Lan, J., Lin, J., Chen, Z., and Yin, G., ACS Catal., 2015, vol. 5, no. 4, pp. 2035–2041. https://doi.org/10.1021/cs501776n
  7. Xie, Y., Huang, Y., Wu, C., Yuan, W., Xia, Y., Liu, X., and Wang, H., Mol. Catal., 2018, vol. 452, pp. 20–27. https://doi.org/10.1016/j.mcat.2018.03.018
  8. Pinault, N., and Bruce, D.W., Coordin. Chem. Rev., 2003, vol. 241, pp. 1–25. https://doi.org/10.1016/S0010-8545(02)00306-5
  9. Alonso-Fagúndez, N., Arias, P.L., Fierro, J. L. G., Mariscal, R., and Granados, M.L., RSC Adv., 2014, vol. 4, no. 98, pp. 54960–54972. https://doi.org/10.1039/C4RA11563E
  10. Naydenov, V., Tosheva, L., Antzutkin, O.N., and Sterte, J., Micropor. Mesopor. Mater., 2004, vol. 78, pp. 181–188. https://doi.org/10.1016/j.micromeso.2004.10.008
  11. Zhao, D., Luan, Z., and Kevan, L., Chem. Commun., 1997, vol. 11, pp. 1009–1010. https://doi.org/10.1039/A700965H
  12. Li, X., Sun, M., Rooke, J.C., Chen, L., and Su, B., Chinese J. Catal., 2013, vol. 34, no. 1, pp. 22–47. https://doi.org/10.1016/S1872-2067(11)60507-X
  13. Pérez-Ramírez, J., Christensen, C., Egeblad, K., Christensen, C., and Groen, J., Chem. Soc. Rev., 2008, vol. 37, no. 11, pp. 2530–2542. https://doi.org/10.1039/B809030K
  14. Maekawa, H., Saha, S.K., Mulla, S.A.R., Komura, K., and Sugi, Y., J. Mol. Catal. A Chem., 2007, vol. 263, pp. 238–246. https://doi.org/10.1016/j.molcata.2006.08.078
  15. Zhou, L., Lu, T., Xu, J., Chen, M., Zhang, C., Chen, C., and Xu, J., Micropor. Mesopor. Mater., 2012, vol. 161, pp. 76–83. https://doi.org/10.1016/j.micromeso.2012.04.058
  16. Zhao, X., Sun, Z., Zhuб Z., Li, A., Li, G., and Wang, X., Catal. Lett., 2013, vol. 143, no. 7, pp. 657–665. https://doi.org/10.1007/s10562-013-1027-1
  17. Zhang, R., Qin, Z., Dong, M., Wang, G., and Wang, J., Catal. Today, 2005, vol. 110, pp. 351–356. https://doi.org/10.1016/j.cattod.2005.09.033
  18. Sasidharan, M., Kiyozumi, Y., and Bhaumik, A., Catal. Sci. Technol., 2011, vol. 1, no. 2, pp. 255–259. https://doi.org/10.1039/C0CY00041H
  19. Wei, X.F., Lia, L.W., Feng, H.G., Gong, J.B., Jiang, K., and Xue, S.L., Ceram. Int., 2020, vol. 46, no. 1, pp. 1026–1032. https://doi.org/10.1016/j.ceramint.2019.09.067
  20. Jiao, W.Q., Ding, J., Shi, Z.B., Liang, X.M., Tang, Y., and He, M., Micropor. Mesopor. Mater., 2016, vol. 228, pp. 237–247. https://doi.org/10.1016/j.micromeso.2016.03.045
  21. Zhu, Y., Hua, Z., Zhou, X., Song, Y., Gong, Y., Zhou, J., Zhao, J., and Shi, J., RSC Adv., 2013, vol. 3, no. 13, pp. 4193–4198. https://doi.org/10.1039/C3RA23276J
  22. Wang, X., Chen, H., Meng, F., Gao, F., Sun, C., Sun, L., and Wang, Y., Micropor. Mesopor. Mater., 2017, vol. 243, pp. 271–290. https://doi.org/10.1016/j.micromeso.2017.02.054
  23. Sun, L., Wang, Y., Chen, H., Sun, C., Meng, F., Gao, F., and Wang, X., Catal. Today, 2018, vol. 316, pp. 91–98. https://doi.org/10.1016/j.cattod.2018.01.015
  24. Jiang, Y., Wang, Y., Zhao, W., Huang, J., Zhao, Y., Yang, G., Lei, Y., and Chu, R., J. Taiwan Inst. Chem. Eng., 2016, vol. 61, pp. 234–240. https://doi.org/10.1016/j.jtice.2015.12.017
  25. Liu, S. and Chao, Z., J. Wuhan Univ. Technol. Mater. Sci. Ed., 2012, vol. 27, pp. 337–345. https://doi.org/10.1007/s11595-012-0463-x
  26. Li, H., Zhou, X., Di, Y., Zhang, J., and Zhang, Y., Micropor. Mesopor. Mater., 2018, vol. 271, pp. 146–155. https://doi.org/10.1016/j.micromeso.2018.05.039
  27. Blin, J. L., Otjacques, C., Herrier, G., and Su, B., Int. J. Inorg. Mater., 2001, vol. 3, no. 1, pp. 75–86. https://doi.org/10.1016/S1466-6049(00)00043-X
  28. Perego, C., and Millini, R., Chem. Soc. Rev., 2013, vol. 42, pp. 3956–3976. https://doi.org/10.1039/C2CS35244C
  29. Li, D., Yao, J., and Wang, H., Prog. Nat. Sci., 2012, vol. 22, no. 6, pp. 684–692. https://doi.org/10.1016/j.pnsc.2012.11.003
  30. Zhang, W., Ming, W., Hu, S., Qin, B., Ma, J., and Li, R., Materials, 2018, vol. 11, no. 5, pp. 651–662. https://doi.org/10.3390/ma11050651
  31. Llombart, P., Palafox, M.A., MacDowell, L.G., and Noya, E.G., Colloids Surf. A, 2019, vol. 580, pp. 123730–123739. https://doi.org/10.1016/j.colsurfa.2019.123730
  32. Gianotti, E., Oliveira, E.C., Dellarocca, V., Coluccia, S., Pastore, H.O., and Marchese, L., Stud. Surf. Sci. Catal., 2002, vol. 141, pp. 417–422. https://doi.org/10.1016/S0167-2991(02)80570-5
  33. Huang, Y., Wu, C., Yuan, W., Xia, Y., Liu, X., Yang, H., and Wang, H., J. Chin. Chem. Soc., 2017, vol. 64, no. 7, pp. 786–794. https://doi.org/10.1002/jccs.201700004
  34. Masoume, R., Chermahini, A.N., Dabbagh, H.A., Saraji, M., and Shahvar, A., J. Environ. Chem. Eng., 2019, vol. 7, no. 1, pp. 102855. https://doi.org/10.1016/j.jece.2018.102855
  35. Rodenas, Y., Fierro, J.L.G., Mariscal, R., Retuerto, M., and Granados, M.L., Top. Catal., 2019, vol. 62, pp. 560–569. https://doi.org/10.1007/s11244-019-01149-2