Examples



mdbootstrap.com



 
Статья
2021

Synthesis and Photocatalytic Properties of Magnesium Silicate Modified with Cationic Chlorin e6 Derivatives


I. V. LoukhinaI. V. Loukhina, M. A. GradovaM. A. Gradova, I. S. KhudyaevaI. S. Khudyaeva, А. V. LobanovА. V. Lobanov, D. V. BelykhD. V. Belykh
Российский журнал общей химии
https://doi.org/10.1134/S1070363221040198
Abstract / Full Text

Synthetic samples of layered magnesium silicate modified with mono-, di-, and tricationic chlorin е6 derivatives have exhibited comparable photochemical activity towards a series of reductants: 1,3-diphenylisobenzofuran selectively oxidizable with singlet oxygen and 1,2-phenylenediamine readily oxidizable with hydrogen peroxide. The optimal photochemical activity of the modified magnesium silicates has been achieved at the ratio of 4–8 μmol of chlorin e6 derivative per 1 g of magnesium silicate.

Author information
  • Institute of Chemistry of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 167000, Syktyvkar, RussiaI. V. Loukhina, I. S. Khudyaeva & D. V. Belykh
  • N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Moscow, RussiaM. A. Gradova & А. V. Lobanov
References
  1. Abrahamse, H. and Hamblin, M.R., Biochem. J., 2016, vol. 473, p. 347. https://doi.org/10.1042/BJ20150942
  2. Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., Kotlińska, J., Michel, O., Kotowski, K., and Kulbacka, J., Biomed. Pharmacother., 2018, vol. 106, p. 1098. https://doi.org/10.1016/j.biopha.2018.07.049
  3. McFarland, S.A., Mandel, A., Dumoulin-White, R., and Gasser, G., Curr. Opin. Chem. Biol., 2020, vol. 56, p. 23. https://doi.org/10.1016/j.cbpa.2019.10.004
  4. Wozniak, A. and Grinholc, M., Front. Microbiol., 2018, vol. 9, p. 930. https://doi.org/10.3389/fmicb.2018.00930
  5. Soares, J.M., Corrêa, T.Q., Inada, N.M., Bagnato, V.S., and Blanco, K.C., J. Pharm. Pharmacol., 2018, vol. 6, p. 863. https://doi.org/10.17265/2328-2150/2018.09.009
  6. Moura, N.M.M., Esteves, M., Vieira, C., Rocha, G.M.S.R.O., Faustino, M.A.F., Almeida, A., Cavaleiro, J.A.S., Lodeiro, C., and Neves, M.G.P.M.S., Dyes Pigm., 2019, vol. 160, p. 361. https://doi.org/10.1016/j.dyepig.2018.06.048
  7. Sobotta, L., Sniechowska, J., Ziental, D., Dlugaszewska, J., and Potrzebowski, M.J., Dyes Pigm., 2019, vol. 160, p. 292. https://doi.org/10.1016/j.dyepig.2018.08.004
  8. Demel, J. and Lang, K., Eur. J. Inorg. Chem., 2012, p. 5154. https://doi.org/10.1002/ejic.201200400
  9. Walter, M.G., Rudine, A.B., and Wamser, C.C., J. Porphyrins Phthalocyanines, 2010, vol. 14, p. 759. https://doi.org/10.1142/S1088424610002689
  10. Urbani, M., Grätzel, M., Nazeeruddin, M.K., and Torres, T., Chem. Rev., 2014, vol. 114, no. 24, p. 12330. https://doi.org/10.1021/cr5001964
  11. Calmeiro, J.M.D., Gira, G., Ferraz, F.M., Fernandes, S.R.G., Pinto, A.L., Lourenço, L.M.O., Tome, J.P.C., and Pereira, C.C.L., Dyes Pigm., 2020, vol. 177, p. 108280. https://doi.org/10.1016/j.dyepig.2020.108280
  12. Matsuo, Y., Ogumi, K., Jeon, I.J., Wang, H., and Nakagawa, T., RSC Adv., 2020, vol. 10, p. 32678. https://doi.org/10.1039/d0ra03234d
  13. Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K., and Grätzel, M., Nat. Chem., 2014, vol. 6, p. 242. https://doi.org/10.1038/NCHEM.1861
  14. Park, J.M., Lee, J.H., and Jang, W.-D., Coord. Chem. Rev., 2020, vol. 407, p. 213157. https://doi.org/10.1016/j.ccr.2019.213157
  15. Marin, M.L., Santos-Juanes, L., Arques, A., Amat, A.M., and Miranda, M.A., Chem. Rev., 2012, vol. 112, no. 3, p. 1710. https://doi.org/10.1021/cr2000543
  16. Nowakowska, M. and Szczubiałka, K., Polym. Degrad. Stab., 2017, vol. 145, p. 120. https://doi.org/10.1016/j.polymdegradstab.2017.05.021
  17. Ussia, M., Urso, M., Miritello, M., Bruno, E., Curcuruto, G., Vitalini, D., Condorelli, G.G., Cantarella, M., Privitera, V., and Carroccio, S.C., RSC Adv., 2019, vol. 9, p. 30182. https://doi.org/10.1039/c9ra06328e
  18. Regulska, E., Rivera-Nazario, D.M., Karpinska, J., Plonska-Brzezinska, M.E., and Echegoyen, L., Molecules, 2019, vol. 24, no. 6, p. 1118. https://doi.org/10.3390/molecules24061118
  19. Giannoudis, E., Benazzi, E., Karlsson, J., Copley, G., Panagiotakis, S., Landrou, G., Angaridis, P., Nikolaou, V., Matthaiaki, C., Charalambidis, G., Gibson, E.A., and Coutsolelos, A.G., Inorg. Chem., 2020, vol. 59, no. 3, p. 1611. https://doi.org/10.1021/acs.inorgchem.9b01838
  20. Ladomenou, K., Natali, M., Iengo, E., Charalampidis, G., Scandola, F., and Coutsolelos, A.G., Coord. Chem. Rev., 2015, vols. 304–305, p. 38. https://doi.org/10.1016/j.ccr.2014.10.001
  21. Nadeem, S., Mumtaz, A., Mumtaz, M., Mutalib, M.I.A., Shaharun, M.S., and Abdullah, B., J. Mol. Liq., 2018, vol. 272, p. 656. https://doi.org/10.1016/j.molliq.2018.09.077
  22. Amao, Y. and Kataoka, R., Catal. Today, 2018, vol. 307, p. 243. https://doi.org/10.1016/j.cattod.2017.12.029
  23. Tatsumi, D., Tsukamoto, T., Honna, R., Hoshino, S., Shimada, T., and Takagi, S., Chem. Lett., 2017, vol. 46, p. 1311. https://doi.org/10.1246/cl.170521
  24. Teramura, K., Tsuneoka, H., Ogura, K., Sugimoto, T., Shishido, T., and Tanaka, T., ChemCatChem., 2014, vol. 6, p. 2276. https://doi.org/10.1002/cctc.201402131
  25. Gurinovich, G.P., Sevchenko, A.N., and Solov’ev, K.N., Usp. Fiz. Nauk, 1963, vol. 79, no. 2, p. 173. https://doi.org/10.3367/UFNr.0079.196302a.0173
  26. Takagi, S., Shimada, T., Ishida, Y., Fujimura, T., Masui, D., Tachibana, H., Eguchi, M., and Inoue, H., Langmuir, 2013, vol. 29, p. 2108. https://doi.org/10.1021/la3034808
  27. Gradova, M.A., Ostashevskaya, I.I., Gradov, O.V., Lobanov, A.V., and Ivanov, V.B., Macroheterocycles, 2018, vol. 11, no. 4, p. 404. https://doi.org/10.6060/mhc181001g
  28. Dhital, B., Vishal, G.R., and Lu, H.P., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 17216. https://doi.org/10.1039/C7CP01476G
  29. Won, D.-I., Lee, J.-S., Ba, Q., Cho, Y.-J., Cheong, H.-Y., Choi, S., Kim, C.H., Son, H.-J., Pac, C., and Kang, S.O., ACS Catal., 2018, vol. 8, p. 1018. https://doi.org/10.1021/acscatal.7b02961
  30. Eguchi, M., Shimada, T., Inoue, H., and Takagi, S., J. Phys. Chem. (C), 2016, vol. 120, no. 13, p. 7428. https://doi.org/10.1021/acs.jpcc.6b01211
  31. Tokieda, D., Tsukamoto, T., Ishida, Y., Ichihara, H., Shimada, T., and Takagi, S., J. Photochem. Photobiol. (A), 2017, vol. 339, p. 67. https://doi.org/10.1016/j.jphotochem.2017.01.013
  32. Grim, R.E., Clay Mineralogy, McGraw-Hill, 1953.
  33. Tarasevich, Yu.I., Stroenie i khimiya poverkhnosti sloistykh silikatov (Structure and Surface Chemistry of Layered Silicates), Kiev: Naukova dumka, 1988.
  34. Belykh, D., Loukhina, I., Mikhaylov, V., and Khudyaeva, I., Chem. Pap., 2020. https://doi.org/10.1007/s11696-020-01421-w
  35. Ogawa, M., Matsutomo, T., and Okada, T., J. Ceram. Soc. Japan, 2008, vol. 116, no. 12, p. 1309. https://doi.org/10.2109/jcersj2.116.1309
  36. Loukhina, I.V., Khudyaeva, I.S., Bugaeva, A.Yu., Dudkin, B.N., and Belykh, D.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 5, p. 912. https://doi.org/10.1134/S1070363217050036
  37. Fujimura, T., Shimada, T., Hamatani, S., Onodera, S., Sasai, R., Inoue, H., and Takagi, S., Langmuir, 2013, vol. 29, no. 16, p. 5060. https://doi.org/10.1021/la4003737
  38. He, H., Frost, R.L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y., and Kloprogge, J.T., Appl. Clay. Sci., 2006, vol. 31, p. 262. https://doi.org/10.1016/j.clay.2005.10.011
  39. Carrado, K.A. and Winans, R.E., Chem. Mater., 1990, vol. 2, no. 3, p. 328. https://doi.org/10.1021/cm00009a027
  40. Loukhina, I.V., Khudyaeva, I.S., Bugaeva, A.Yu., and Belykh, D.V., Butlerovsk. Soobshch., 2019, vol. 58, no. 4, p. 34. https://doi.org/10.37952/ROI-jbc-01/19-58-4-34
  41. Gushchina, O.I., Larkina, E.A., and Mironov, A.F., Macroheterocycles, 2014, vol. 7, no. 4, p. 414. https://doi.org/10.6060/mhc140931g
  42. Tarabukina, I.S., Startseva, O.M., Patov, S.A., and Belykh, D.V., Macroheterocycles, 2015, vol. 8, no. 2, p. 168. https://doi.org/10.6060/mhc150456b
  43. Venediktov, E.A., Tulikova, E.Yu., Rozhkova, E.P., Khudyaeva, I.S., Belykh, D.V., and Berezin, D.B., Macroheterocycles, 2017, vol. 10, no. 3, p. 295. https://doi.org/10.6060/mhc170404v