Examples



mdbootstrap.com



 
Статья
2021

Synthesis and Characterization of Au/Fe Nanostructures and Study of the Effect of Bovine Serum Albumin on Them


Parinaz RejaeianParinaz Rejaeian, Ali BahariAli Bahari, Dariush ShajariDariush Shajari
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421130185
Abstract / Full Text

In this study, Au/Fe nano-crystallites were obtained using two seed growth and solvothermal methods; and in the next stage, their biosensor features were evaluated in identifying albumins. Au and Fe nano-crystallites were separately synthesized and were tested in the form of composites with the matrix hexadecyl trimethyl ammonium bromide as samples. Then, in order to evaluate the geometric structure, nanostructure features and the role of localized surface plasmons, spectrums were measured for the samples by the use of visible-ultraviolet spectroscopy and images were taken by the use of electron transmission microscope. Then it was observed in the bovine blood serum, which is very similar to human blood serum, that sensors based on Au/Fe nano-crystallites were able to show the quantity of albumins in lower concentrations in the bovine blood serum. This can be considered as a good result for prevention of kidney diseases in humans.

Author information
  • Physics Department, University of Mazandaran, Babolsar, Mazandaran, IranParinaz Rejaeian, Ali Bahari & Dariush Shajari
References
  1. A. Yousefi, S. A. Seyyed Ebrahimi, A. Seyfoori, and H. Mahmoodzadeh Hosseini, BioNanoScience 8, 95 (2018).
  2. M. Krajewski, K. Brzozka, M. Tokarczyk, et al., J. Magn. Magn. Mater. 458, 346 (2018).
  3. S. V. Salihov, Y. A. Ivanenkov, S. P. Krechetov, et al., J. Magn. Magn. Mater. 394, 173 (2015).
  4. X. Huang, S. Neretina, and M. A. El-Sayed, Adv. Mater. 21, 4880 (2009).
  5. B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).
  6. B. Radbill, B. Murphy, and D. LeRoith, Mayo Clinic Proc. 83, 1373 (2008).
  7. C. W. Group, Kidney Int., Suppl. 3, 1 (2013).
  8. E. L. Gelamo, C. H. T. P. Silva, H. Imasato, and M. Tabak, Biochim. Biophys. Acta 1594, 84 (2002).
  9. J. Steinhardt, J. Krijn, and J. G. Leidy, Biochemistry 10, 4005 (2002).
  10. L. Vigderman, B. P. Khanal, and E. R. Zubarev, Adv. Mater. 24, 4811 (2012).
  11. M. Yazdani, M. Ebrahimi-Nik, A. Heidar, et al., Renewable Energy 135, 496 (2019).
  12. H. Liua, Y. Suna, and T. Yua, Chem. Eng. J. 378, 122120 (2019).
  13. K. Li, Y. Lai, W. Zhang, et al., Talanta 84, 607 (2011).
  14. S. Daemi, A. Ashkarran, A. Bahari, and Sh. Ghasemi, J. Colloid Interface Sci. 494, 290 (2017).
  15. D. Shahjari, A. Bahari, and P. Gill, Colloids Surf. A 543, 118 (2018).
  16. M. R. Shahmiri, A. Bahari, H. Karimi-Maleh, R. Hosseinzadeh, and N. Mirnia, Sens. Actuators, B 177, 70 (2013).
  17. T. T. N. Anh, L. T. Tam, V. V. Thu, et al., J. Inorg. Organomet. Polym. Mater. 1, 1 (2020).
  18. D. Shajari, A. Bahari, P. Gill, and M. Mohseni, Opt. Mater. 64, 376 (2017).
  19. M. Lotfi, A. Bahari, and S. Mahjoub, Res. Chem. Intermed. 45, 3497 (2019).
  20. V. H. Pham, D. H. Quan, N. T. Manh, et al., Green Process. Synth. 8, 802 (2019).
  21. Z. Zhang, Z. Chen, F. Cheng, Y. Zhang, and L. Chen, Biosens. Bioelectron. 89, 932 (2017).
  22. F. Canfarotta, A. Waters, R. Sadler, et al., Nano Res. 9, 3463 (2016).
  23. V. N. Rai, A. K. Srivastava, C. Mukherjee, and S. K. Deb, Indian J. Phys. 90, 107 (2015).
  24. M. Tebbe, C. Kuttner, M. Mannel, A. Fery, and M. Chanana, ACS Appl. Mater. Interfaces 7, 5984 (2015).
  25. J. Tamayo, P. M. Kosaka, J. J. Ruz, A. San Paulo, and M. Calleja, Chem. Soc. Rev. 42, 1287 (2013).
  26. S. D. Medina, S. McDonough, P. Swanglap, et al., Langmuir 28, 9131 (2012).
  27. M. A. Mir, N. Gull, J. M. Khan, et al., J. Phys. Chem. B 114, 3197 (2010).