Статья
2018

Water Hardness Electrodes with Ionophores Containing Oxy- and Ester-Groups


Mikhail B. Levin Mikhail B. Levin , Galina A. Khripoun Galina A. Khripoun , Sergei M. Korneev Sergei M. Korneev , Konstantin N. Mikhelson Konstantin N. Mikhelson
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518040055
Abstract / Full Text

Lipophilic compounds combining oxy- and ester-groups are synthesized and studied as neutral ionophores in plasticized PVC membranes for the development of novel water hardness ion-selective electrodes. Electrodes based on the ionophores studied showed a higher selectivity to calcium over magnesium ions. However, for electrodes based on hexadecyl-4-hydroxybutanoate or decyloxybutanol this preference turned to be rather low: logKCaMg=–(0.5–0.7). Electrodes with membranes containing hexadecyl-4- hydroxybutanoate, 0.3 M as a neutral ionophore and bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate, 0.01 M as a charged ionophore, in combination with Ca2+-selective electrode based on ETH 1001 as ionophore, proved to be suitable for measurements of water hardness, also for the measurement of Mg2+ ion content in artificial aquarium fish-breeding water samples and in samples modeling electrolyte composition of blood serum.

Author information
  • Chemistry Institute, St. Petersburg State University, Stary Peterhof, St. Petersburg, 198504, Russia

    Mikhail B. Levin, Galina A. Khripoun & Konstantin N. Mikhelson

  • Institute of Chemistry, Osnabrűck University, Osnabrűck, Germany

    Sergei M. Korneev

References
  1. Boulahlib-Bendaoud, Y., Ghizellaoui, S., and Tlili, M., Inhibition of CaCO3 scale formation in ground waters using mineral phosphates, Desalinat. Water Treatment, 2012, vol. 38, pp. 271–277.
  2. Salman, M.A., Al-Nuwaibit, G., Safar, M., and Al-Mesri, A., Performance of physical treatment method and different commercial antiscalants to control scaling deposition in desalination plant, Desalinat., 2015, vol. 369, pp. 18–25.
  3. Akgul, A., Effect of water hardness on the offset printing quality, Asian J. Chem., 2012, vol. 24, pp. 4771–4773.
  4. Rosanoff, A., The high heart health value of drinkingwater magnesium, Med. Hypotheses, 2013, vol. 81, pp. 1063–1065.
  5. Charles, A.L., Markich, S.J., Stauber, J.L., and De Filippis, L.F., The effect of water hardness on the toxicity of uranium to a tropical freshwater alga (Chlorella sp.), Aquat. Toxicol., 2002, vol. 60, pp. 61–73.
  6. Källqvist, T., Effect of water hardness on the toxicity of cadmium to the green algae Pseudokirchneriella subcapitata in an artificial growth medium and nutrient-spiked natural Lake Waters, J. Toxicol. Environ. Health A, 2009, vol. 72, pp. 277–283.
  7. Terzi, E. and Verep, B., Effects of water hardness and temperature on the acute toxicity of mercuric chloride on rainbow trout (Oncorhynchus mykiss), Toxicol. Ind. Health, 2011, vol. 28, pp. 499–504.
  8. Harford, A.J., Mooney, T.J., Trenfield, M.A., and van Dam, R.A., Manganese toxicity to tropical freshwater species in low hardness water, Environ. Toxicol. Chem., 2015, vol. 34, pp. 2856–2863.
  9. Soucek, D.J., Tyler, Y., Linton, K., Christopher, Z., Tarr, D., Dickinson, A., Wickramanayake, N., Delos, C.G., and Cruz, L.A., Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates, Environ. Toxicol. Chem., 2011, vol. 30, pp. 930–938.
  10. Elphick, J.R., Davies, M., Gilron, G., Canaria, E.C., Lo, B., and Bailey, H.C., An aquatic toxicological evaluation of sulfate: The case for considering hardness as a modifying factor in setting water quality guidelines, Environ. Toxicol. Chem., 2011, vol. 30, pp. 247–252.
  11. Straus, D.L. Farmer, B.D., Beck, B.H., Bosworth, B.G., Torrans, E.L., and Tucke, C.S., Water hardness influences Flavobacterium columnare pathogenesis in channel catfish, Aquaculture, 2015, vol. 435, pp. 252–256.
  12. Gogoi, B., Kachari, A., and Das, D.N., Assessment of water quality in relation to fishery perspective in flood plain wetlands of Subansiri River Basin Assam, India, J. Fish. Aquat. Sci., 2015, vol. 10, pp. 171–180.
  13. Lergaa, T.M. and O’Sullivan, C.K., Rapid determination of total hardness in water using fluorescent molecular aptamer beacon, Anal. Chim. Acta, 2008, vol. 610, pp. 105–111.
  14. Verissimo, M.I.S., Oliveira, J.A.B.P., and Gomes, M.T.S.R., Determination of the total hardness in tap water using acoustic wave sensors, Sens. Actuat. B, 2007, vol. 127, pp. 102–106.
  15. Capitan-Vallvey, L.F., Fernandez-Ramos, M.D., de Cienfuegos Galvez, P.A., and Santoyo-Gonzalez, F., Characterisation of a transparent optical test strip for quantification of water hardness, Anal. Chim. Acta, 2003, vol. 481, pp. 139–148.
  16. Ross, J.W., Calcium-selective electrode with liquid ion exchanger, Science, 1967, vol. 156, pp. 1378–1379.
  17. Bühlmann, P., Pretsch, E., and Bakker, E., Carrierbased ion-selective electrodes and bulk optodes, 2. Ionophores for potentiometric and optical sensors, Chem. Rev., 1998, vol. 98, pp. 1593–1687.
  18. Numata, M., Baba, K., Hemmi, A., Hachiya, H., Ito, S., Masadome, T., Asano, Y., Ohkubo, S., Gomi, T., Imato, T., and Hobo, T., Determination of hardness in tapwater and upland soil extracts using a long-term stable divalent cation selective electrode based on a lipophilic acrylate resin as a membrane matrix, Talanta, 2001, vol. 55, pp. 449–457.
  19. Mikhelson, K.N., Ion-selective electrodes, in Lecture Notes in Chemistry, Vol. 81, Heidelberg-New York-Dordrecht-London: Springer, 2013, p. 162.
  20. Grekovich, A.L., Didina, S.E., and Butrimova, N.A., Development and study of a film electrode for the measurement of the sum of calcium and magnesium cations concentrations, Ion Exchange Ionometry, 2000, vol. 10, pp. 237–249.
  21. Sokalski, T., Ceresa, A., Zwickl, T., and Pretsch, E., Large improvement of the lower detection limit of ionselective polymer membrane electrodes, J. Am. Chem. Soc., 1997, vol. 119, pp. 11347–11348.
  22. Peshkova, M.A., Sokalski, T., Mikhelson, K.N., and Lewenstam, A., Obtaining Nernstian response of Ca2+-selective electrode in a broad concentration range by tuned galvanostatic polarization, Anal. Chem., 2008, vol. 80, pp. 9181–9187.
  23. Saris, N.-E.L., Mervaala, E., Karppanen, H., Khawaja, J.A., and Lewenstam, A., Magnesium. An update on physiological, clinical and analytical aspects, Clin. Chim. Acta, 2000, vol. 294, pp. 1–26.
  24. Suzuki, K., Watanabe, K., Matsumoto, Yu., Kobayashi, M., Sato, S., Siswanta, D., and Hisamoto, H., Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion-sensing component for an ion-selective electrode, Anal. Chem., 1995, vol. 67, pp. 324–334.
  25. Zhang, W., Fakler, A., Demuth, C., and Spichiger, U.E., Comparison of different methods for determining the selectivity coefficient using a magnesium-selective electrode, Anal. Chim. Acta, 1998, vol. 375, pp. 211–222.
  26. Maj-Zurawska, M. and Lewenstam, A., Selectivity coefficients of ion-selective magnesium electrodes used for simultaneous determination of magnesium and calcium ions, Talanta, 2011, vol. 87, pp. 295–301.
  27. Saurina, J., Lopez-Aviles, E., Le Moal, A., and Hernandez-Cassou, S., Determination of calcium and total hardness in natural waters using a potentiometric sensor array, Anal. Chim. Acta, 2002, vol. 464, pp. 89–98.
  28. Morf, W.E., The Principles of Ion-Selective Electrodes and of Membrane Transport, Budapest: Akademiai Kiado, 1981, p. 433.
  29. Peshkova, M.A., Koltashova, E.S., Khripoun, G.A., and Mikhelson, K.N., Improvement of the upper limit of the ISE Nernstian response by tuned galvanostatic polarization, Electrochim. Acta, 2015, vol. 167, pp. 187–193.
  30. Ivanova, A.D., Koltashova, E.S., Solovyeva, E.V., Peshkova, M.A., and Mikhelson, K.N., Impact of the electrolyte co-extraction to the response of the ionophorebased ion-selective electrodes, Electrochim. Acta, 2016, vol. 213, pp. 439–446.
  31. Bakker, E., Bühlmann, P., and Pretsch, E., Carrierbased ion-selective electrodes and bulk optodes, 1. General characteristics, Chem. Rev., 1997, vol. 97, pp. 3083–3132.
  32. Mikhelson, K.N., Bobacka, J., Lewenstam, A., and Ivaska, A., Potentiometric performance and interfacial kinetics of neutral ionophore based ISE membranes in interfering ion solutions before and after contact with primary ions, Electroanalysis, 2001, vol. 13, pp. 876–881.
  33. Mikhelson, K.N., Bobacka, J., Ivaska, A., Lewenstam, A., and Bochenska, M., Selectivity of lithium electrodes: Correlation with ion-ionophore complex stability constants and with interfacial exchange current densities, Anal. Chem., 2002, vol. 74, pp. 518–527.
  34. Pejcic, B. and De Marco, R., Impedance spectroscopy: Over 35 years of electrochemical sensor optimization, Electrochim. Acta, 2006, vol. 51, pp. 6217–6229.
  35. Mikhelson, K.N., AC-impedance studies of ion transfer across ionophore-based ion-selective membranes, Chem. Anal. (Warsaw, Pol.), 2006, vol. 51, pp. 853–867.
  36. Alvarez-Mieles, G., Irvine, K., Griensven, A.V., Arias-Hidalgo, M., Torres, A., and Mynett, A.E., Relationships between aquatic biotic communities and water quality in a tropical river–wetland system, Environ. Sci. Policy, 2013, vol. 34, pp. 115–127.
  37. Lewenstam, A., Routines and challenges in clinical application of electrochemical ion-sensors, Electroanalysis, 2014, vol. 26, pp. 1171–1181.