Degradation of Surface of Structurally Modified PlatinumCarbon Component of Electrodes of Hydrogen Fuel Cell

N. V. Glebova N. V. Glebova , A. O. Krasnova A. O. Krasnova , A. A. Nechitailov A. A. Nechitailov , A. A. Tomasov A. A. Tomasov , N. K. Zelenina N. K. Zelenina
Российский электрохимический журнал
Abstract / Full Text

The variation of surface area of platinum–carbon material of hydrogen fuel cell electrodes in the presence of structure-modifying carbon nanotubes under long-term electrochemical action is studied. The method of cyclic voltammetric curves is used to study the specific features of the variation of platinum nanoparticle surface area by the hydrogen desorption in the hydrogen region and the charging current of electrical double layer in the double-layer potential region. The results are obtained separately for the electrodes on the cathodic and anodic sides.

Author information
  • Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia

    N. V. Glebova, A. O. Krasnova, A. A. Nechitailov, A. A. Tomasov & N. K. Zelenina

  1. De Bruijn, F.A. and Janssen, G.J.M., PEM Fuel Cell Materials: Costs, Performance and Durability, in Encyclopedia of Sustainability, Meyers, R.A., Ed., New York: Springer, 2013, p. 249. https://doi.org/10.1007/978-1-4614-5785-5_9
  2. Zhao, J. and Li, X., A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques, Energy Convers. Manag.t, 2019, vol. 199, p. 112022. https://doi.org/10.1016/j.enconman.2019.112022
  3. Garcia-Sanchez, D., Morawietz, T., Gama da Rocha, P., Hiesgen, R., Gazdzicki, P., and Friedrich, K.A., Local impact of load cycling on degradation in polymer electrolyte fuel cells, Appl. Energy, 2020, vol. 259, p. 114210. https://doi.org/10.1016/j.apenergy.2019.114210
  4. Pinar, F.J., Rastedt, M., Pilinski, N., and Wagner, P., Effect of idling temperature on high temperature polymer electrolyte membrane fuel cell degradation under simulated start/stop cycling conditions, Int. J. Hydrog. Energy, 2016, vol. 41, no. 42, p. 19463. https://doi.org/10.1016/j.ijhydene.2016.05.091
  5. https://www.energy.gov/eere/fuelcells/durability-working-group.
  6. https://www.energy.gov/sites/prod/files/2015/08/f25/fcto_ dwg_usdrive_fctt_accelerated_stress_tests_jan2013.pdf.
  7. Nechitailov, A.A. and Glebova, N.V., Investigation of stability of nanocomposite of platinized carbon black and carbon nanotubes as an electrocatalyst for fuel cells, Electrochemicheskaya Energetika, 2013, vol. 13, p. 192.
  8. Menshchikov, V., Alekseenko, A., Guterman, V., Nechitailov, A., Glebova, N., Tomasov, A., Spiridonova, O., Belenov, S., Zelenina, N., and Safronenko, O., Effective platinum–copper catalysts for methanol oxidation and oxygen reduction in PEM FC, Nanomaterials, 2020, vol. 10, no. 4, p. 742. https://doi.org/10.3390/nano10040742
  9. Krasnova, A.O., Glebova, N.V., and Nechitailov A.A., Technology and structural characteristics of electrode material in the Pt/C–Taunite-MD–Nafion system, Russ. J. Appl. Chem., 2016, vol. 89, no. 6, p. 916. https://doi.org/10.1134/S1070427216060112
  10. Glebova, N.V., Nechitailov, A.A., and Krasnova, A.O., Electrode material containing carbon nanotubes and its kinetic characteristics of oxygen electroreduction, Reac. Kinet. Mech. Cat., 2020, vol. 134, p. 599. https://doi.org/10.1007/s11144-020-01866-w
  11. Glebova, N.V., Nechitailov, A.A., Krasnova, A.O., Tomasov, A.A., and Zelenina, N.K., Composite cathode of a hydrogen fuel cell with a high energy conversion factor, Technical Physics, 2019, vol. 64, p. 1879. https://doi.org/10.1134/S1063784219120077
  12. https://www.fuelcellstore.com/spec-sheets/vulcan-xc72-spec-sheet.pdf.
  13. Uchida, M., Aoyama, Y., Tanabe, M., Yanagihara, N., Eda, N., and Ohta A., Influences of both carbon supports and heat-treatment of supported catalyst on electrochemical oxidation of methanol, J. Electrochem. Soc., 1995, vol. 142, p. 2572. https://doi.org/10.1149/1.2050055
  14. McBreen, J., Olender, H., Srinivasan, S., and Kordesch, K., Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation, J. Appl. Electrochem., 1981, vol. 11, p. 787. https://doi.org/10.1007/BF00615184
  15. Pantea, D., Darmstadt, H., Kaliaguine, S., Summchen, L., and Roy, C., Electrical conductivity of thermal carbon blacks: Influence of surface chemistry, Carbon, 2001, vol. 39, p. 1147. https://doi.org/10.1016/S0008-6223(00)00239-6
  16. Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B: Environmental, 2009, vol. 88, p. 1. https://doi.org/10.1016/j.apcatb.2008.09.030
  17. http://www.nanotc.ru/producrions/87-cnm-taunit.
  18. http://fuelcell.com/product/fc-05-02/.
  19. Nechitailov, A.A., Glebova, N.V., Tomasov, A.A., Krasnova, A.O., and Zelenina, N.K., Study of the heterogeneity of a mixed-conducting electrochemical electrode, Tech. Phys., 2019, vol. 64, no.6, p. 899. https://doi.org/10.1134/S1063784219060136
  20. Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers, Vancouver: Springer, 2008, p. 499. https://doi.org/10.1007/978-1-84800-936-3
  21. Mathias, M.F., Makharia, R., Gasteiger, H.A., Conley, J.J., Fuller, T.J., Gittleman, C.J., Kocha, S.S., Miller, D.P., Mittelsteadt, C.K., Xie, T., Yan, S.G., and Yu, P.T., Two fuel cells in every garage?, Electrochem. Soc. Interface, 2005, vol. 14, no. 3, p. 24.