Facile Fabrication of Graphene/Mn3O4/Cu(OH)2 on Cu Foil as an Electrode for Supercapacitor Applications

H. N. Miankushki H. N. Miankushki , A. Sedghi A. Sedghi , S. Baghshahi S. Baghshahi
Российский электрохимический журнал
Abstract / Full Text

To improve the specific capacitance of graphene based supercapacitor, new ternary graphene/Mn3O4/Cu(OH)2 composite was synthesized by two-step method. First, graphene/Mn3O4 composites with different weight ratio (G : Mn = 1 : 1, G : Mn = 1 : 4, G : Mn = 1 : 7 and G : Mn = 1 : 10) were synthesized by mixing and annealing method. Second, Cu(OH)2 rods were deposited on Cu foil. Afterwards, graphene/Mn3O4 composite powders were deposited on Cu(OH)2/Cu copper current collector as working electrodes. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The XRD analysis revealed the presence of graphene/Mn3O4. The presence of Mn3O4 was also confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy. Graphene/Mn3O4/Cu(OH)2 composite electrode with the weight ratio of G : Mn = 1 : 7 showed the best electrochemical performance and exhibited the largest specific capacitance of approximately 266 F g2−1 at the scan rate of 10 mV/s in 6 M KOH electrolyte. In addition, other electrochemical measurements (charge-discharge and EIS) of the G/Cu(OH)2/Cu, and G/Mn3O4/Cu(OH)2/Cu electrodes suggested that the G/Mn3O4/Cu(OH)2/Cu electrode is promising materials for supercapacitor application.

Author information
  • Department of Materials Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran

    H. N. Miankushki, A. Sedghi & S. Baghshahi

  1. Wang, Z., Wang, C.Y., Ma, H.L., Liu, Z.H. and Hao, Z.P., Facilely synthesized Fe2O3-graphene nano-composite as novel electrode materials for supercapacitors with high performance, J. Alloys Compd., 2013, vol. 552, p. 486.
  2. Xiang, C., Li, M., Zhi, M., Manivannan, A., and Wu, N.Q., Reduced graphene oxide/titanium dioxide composite for supercapacitor electrodes: shape and coupling effects, J. Mater. Chem., 2012, vol. 22, p. 19161.
  3. Conway, B.E., Electrochemical Supercapacitors, NewYork: Plenum Press, 1999.
  4. Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, p. 37.
  5. Zheng, J.P., Cygan, P.J., and Jow, T.R., Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 1995, vol. 142, p. 2699.
  6. Huang, C.-C., Hu, Y.-H., and Chang, K.-H., Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors, J. Power Sources, 2002, vol. 108, p. 117.
  7. Zhu, G., Li, H.J., Deng, L.J., and Liu, Z.H., Low-temperature synthesis of 5-MnO2 with large surface area and its capacitance, Mater. Lett., 2010, vol. 64, p. 1763.
  8. Dubal, D.P., Dhawale, D.S., Salunkhe, R.R., Fulari, V.J., and Lokhande, C.D., Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application, J. Alloys Compd., 2010, vol. 497, p. 166.
  9. Liu, T.-C., Pell, W.G., and Conway, B.E., Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance, Electrochim. Acta, 1999, vol. 44, p. 2829.
  10. Yuan, C., Zhang, X., Su, L., Gao, B., and Shen, L., Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors, Mater. Chem. A, 2009, vol. 19, p. 5772.
  11. Lang, X., Hirata, A., Fujita, T., and Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnol., 2011, vol. 6, p. 232.
  12. Zhang, S.W. and Chen, G.Z., Manganese oxide based materials for supercapacitors, Energy Mater., 2008, vol. 3, p. 186.
  13. Takahashi, K., Dry cell and battery industry and powder technology with emphasis on powdered manganese dioxide, Electrochim. Acta, 1981, vol. 26, p. 1467.
  14. Chang, K.H., Lee, Y.F., Hu, C.C., Chang, C.I., Liu, C.L., and Yang, Y., A unique strategy for preparing single-phase unitary/binary oxides-graphene composites, Chem. Commun., 2010, vol. 46, p. 7957.
  15. Liu, Y., He, D., Wu, H., and Duan, J., Graphene and nanostructured Mn3O4 composites for supercapacitors, Integr. Ferroelectr, 2013, vol. 144, p. 118.
  16. Wu, Y., Liu, S., Wang, H., Wang, X., Zhang, X., and Jin, G., A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors, Electrochim. Acta, 2013, vol. 90, p. 210.
  17. Zhang, X., Sun, X., Chen, Y., and Zhang, D., One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for super-capacitors, Mater. Lett, 2012, vol. 68, p. 336.
  18. Lee, J.W., Hall, A.S., Kim, J.-D., and Mallouk, T.E., A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability, Chem. Mater., 2012, vol. 24, p. 115.
  19. Blomquist, N., Wells, T., Andres, B., Backstrom, J., Forsberg, S., and Olin, H., Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials, Sci. Rep., 2017, vol. 7, p. 39836.
  20. Gheytani, S., Liang, Y., Jing, Y., Xu, J.Q., and Yao, Y., Chromate conversion coated aluminium as a lightweight and corrosion-resistant current collector for aqueous lithium-ion batteries, Mater. Chem. A, 2016, vol. 4, p. 395.
  21. Wang, X., Chen, Ch., Chen, K., Chen, H., and Shao Jun Yuan, MnO2 nanosheets-decorated CuO nanoneedles arrays@Cu foils for supercapacitors, Int. J. Electrochem. Sci., 2016, vol. 11, p. 3425.
  22. Bose, S., Kim, N.H., Kuila, T., Lau, K., and Lee, J.H., Electrochemical performance of a graphene-polypyr-role nanocomposite as a supercapacitor electrode, Nano-technology, 2011, vol. 22, p. 369502.
  23. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., Recent advances in graphene based polymer composites, Prog. Polym. Sci., 2010, vol. 35, p. 1350.
  24. Rosaiah, P., Jinghui, Z., Dadamiah P.M.D. Shaik Hussain, O.M., Qiu, Y., and Zhao, L., Reduced graphene oxide/Mn3O4 nanocomposite electrodes with enhanced electrochemical performance for energy storage applications, J. Electroanal. Chem., 2017, vol. 794, pp. 78–85.
  25. Liao, Q.Y., Li, S.Y., Cui, H., and Wang, C.H., Vertically-aligned graphene@Mn3O4 nanosheets for a highperformance flexible all-solid-state symmetric super-capacitor, J. Mater. Chem. A, 2016, vol. 4, p. 8830.
  26. Zhou, T., Mo, Sh., Zhou, Sh., Zou, W., Liu, Y., and Yuan, D., Mn3O4/worm-like mesoporous carbon synthesized via a microwave method for supercapacitors, J. Mater. Sci., 2011, vol. 46, p. 3337.
  27. Panpan Xu, Ke Ye, Mengmeng Du, Jijun Liu, Kui Cheng, Jinling Yin, Guiling Wang, and Dianxue Cao, One-step synthesis of copper compounds on copper foil and their supercapacitive performance, RSC Adv., 2015, vol. 5, p. 36656.
  28. Yang, Y., Zeng, B., Liu, J., Long, Y., Li, N., Wen, Z., and Jiang, Y., Graphene/MnO2 composite prepared by a simple method for high performance supercapacitor, Mater. Res. Innov, 2016, vol. 20, no. 2.
  29. Sathyamoorthy, R. and Mageshwari, K., Synthesis of hierarchical CuO microspheres: photocatalytic and antibacterial activities, Phys. E, 2013, vol. 47, p. 157.
  30. Momeni, M.M., Nazari, Z., Kazempour, A., Hakimiyan, M., and Mirhoseini, S.M., Preparation of CuO nanostructures coating on copper as supercapacitor materials, Surf. Eng., 2014, vol. 30, p. 775.
  31. Pramanik, A., Maiti, S., and Mahanty, S., Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor, Dalton Trans., 2015, vol. 44, p. 14604.
  32. Chen, J., Xu, J., Zhou, Sh., Zhao, N., and Wong, C.P., J. Mater. Chem. A, 2015, vol. 3, p. 17385.
  33. Yuan, R.M., Li, H.J., Yin, X.M., Lu, J.H., and Zhang, L., 3D CuO nanosheet wrapped nanofilm grown on Cu foil for high performance non-enzymatic glucose biosensor electrode, Talanta, 2017, vol. 174, p. 514.
  34. Hsu, Y.K., Chen, Y.C., and Lin, Y.G., Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes, J. Electroanal. Chem., 2012, vol. 673, p. 43.
  35. Zhang, F., Zhang, X.G., and Hao, L., Solution synthesis and electrochemical capacitance performance of Mn3O4 polyhedral nanocrystals via thermolysis of a hydrogen-bonded polymer, J. Mater. Chem. Phys., 2011, vol. 126, p. 853.
  36. Lim, C.H., Ng, H.N., Lim, Y.S., Chee, W.K., and Huang, N.M., Fabrication of flexible polypyr-role/graphene oxide/manganese oxide supercapacitor, Int. J. Energy Res., 2015, vol. 39, no. 3, pp. 344–355.
  37. Wang, Y., Re, J., Huang, X., and Ding, J., The synthesis of polypyrrole@Mn3O4/reduced graphene oxide anode with improved coulombic efficiency, J. Electrochim. Acta, 2015, vol. 186, p. 345.
  38. Sun, W., Chen, L., Wang, Y., Zhou, Y., Meng, Sh., Li, H., and Luo, Y., Synthesis of highly conductive PPy/Graphene/MnO2 composite using ultrasonic irradiation, J. Synth. React. Inorg. Metal Organic Nano-Metal Chem., 2016, vol. 46, p. 437.
  39. Fathi, M., Saghafi, M., Mahboubi, F., and Mohajerzadeh, S., Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors, Synth. Met., 2014, vol. 198, p. 345.
  40. Ng, C.H., Lim, H.N., Lim, Y.S., Chee, W.K., and Huang, N.M., Fabrication of flexible polypyr-role/graphene oxide/manganese oxide supercapacitor, Int. J. Energy Res, 2015, vol. 39, p. 344.
  41. Zhu, L., Zhang, S., Cui, Y., Song, H., and Chen, X., One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite, Electrochim. Acta, 2013, vol. 89, p. 18.
  42. Gund, G.S., Dubal, D.P., Patil, B.H., Shindea, S.S., and Lokhandea, C.D., Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta, 2013, vol. 92, p. 205.