Examples



mdbootstrap.com



 
Статья
2021

Adsorption properties of mesoporous carbon synthesized by pyrolysis of zinc glycerolate


I. S. PuzyrevI. S. Puzyrev, E. I. AndreikovE. I. Andreikov, G. S. ZakharovaG. S. Zakharova, N. V. Podval’nayaN. V. Podval’naya, V. A. OsipovaV. A. Osipova
Российский химический вестник
https://doi.org/10.1007/s11172-021-3153-z
Abstract / Full Text

Mesoporous carbon of lamellar morphology was synthesized by the thermal decomposition of zinc glycerolate in an inert atmosphere followed by the removal of zinc oxide from the ZnO/C composite. The obtained material was characterized by scanning electron microscopy, Raman spectroscopy, and low-temperature adsorption of nitrogen. Mesoporous carbon is remarkable for a high adsorption rate of methylene blue dye from aqueous solutions with the maximum adsorption capacity toward the dye equal to 1680 mg g−1.

Author information
  • I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 ul. S. Kovalevskoi, 620108, Ekaterinburg, Russian FederationI. S. Puzyrev, E. I. Andreikov & V. A. Osipova
  • Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 ul. Pervomaiskaya, 620990, Ekaterinburg, Russian FederationG. S. Zakharova & N. V. Podval’naya
References
  1. H. Marsh, F. Rodríguez-Reinoso, Act. Carbon, 2006; DOI: https://doi.org/10.1016/B978-0-08-044463-5.X5013-4.
  2. V. B. Fenelonov, Poristyi uglerod[Porous Carbon], IK SO RAN, Novosibirsk, 1995, 518 pp. (in Russian).
  3. I. Matos, M. Bernardo, I. Fonseca, Catal. Today, 2017, 285, 194; DOI: https://doi.org/10.1016/j.cattod.2017.01.039.
  4. A. Yu. Tsivadze, O. E. Aksyutin, A. G. Ishkov, I. E. Men’shchikov, A. A. Fomkin, A. V. Shkolin, E. V. Khozina, V. A. Grachev, Russ. Chem. Rev., 2018, 87, 950; DOI: https://doi.org/10.1070/rcr4807.
  5. E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, D. Prasetyoko, Mater. Today Chem., 2020, 16; DOI: https://doi.org/10.1016/j.mtchem.2019.100233.
  6. Q. Zhou, X. Jiang, Y. Guo, G. Zhang, W. Jiang, Chemosphere, 2018, 201, 519; DOI: https://doi.org/10.1016/j.chemosphere.2018.03.045.
  7. C. H. Chia, N. F. Razali, M. S. Sajab, S. Zakaria, N. M. Huang, H. N. Lim, Sains Malaysiana, 2013, 42, 819.
  8. T. Wu, X. Cai, S. Tan, H. Li, J. Liu, W. Yang, Chem. Eng. J., 2011, 173, 144; DOI: https://doi.org/10.1016/j.cej.2011.07.050.
  9. M. Yusuf, F. M. Elfghi, S. A. Zaidi, E. C. Abdullah, M. A. Khan, RSC Adv., 2015, 5, 50392; DOI: https://doi.org/10.1039/c5ra07223a.
  10. Y. Zheng, H. Niu, D. He, S. Wang, Y. Cai, S. Zhang, Microporous Mesoporous Mater., 2019, 276, 251; DOI: https://doi.org/10.1016/j.micromeso.2018.10.008.
  11. G. Ersan, O. G. Apul, F. Perreault, T. Karanfil, Water Res., 2017, 126, 385; DOI: https://doi.org/10.1016/j.watres.2017.08.010.
  12. M. Inagaki, M. Toyoda, Y. Soneda, S. Tsujimura, T. Morishita, Carbon, 2016, 107, 448; DOI: https://doi.org/10.1016/j.carbon.2016.06.003.
  13. L. Xie, Z. Jin, Z. Dai, Y. Chang, X. Jiang, H. Wang, Carbon, 2020, 170, 100; DOI: https://doi.org/10.1016/j.carbon.2020.07.034.
  14. Z. J. Zhang, H. T. Yi, X. Y. Chen, J. Alloys Compd., 2015, 651, 414; DOI: https://doi.org/10.1016/j.jallcom.2015.08.175.
  15. G. A. Ferrero, M. Sevilla, A. B. Fuertes, Carbon, 2015, 88, 239; DOI: https://doi.org/10.1016/j.carbon.2015.03.014.
  16. S. J. Yang, T. Kim, J. H. Im, Y. S. Kim, K. Lee, H. Jung, C. R. Park, Chem. Mater., 2012, 24, 464; DOI: https://doi.org/10.1021/cm202554j.
  17. B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc., 2008, 130, 5390; DOI: https://doi.org/10.1021/ja7106146.
  18. F. Cesano, D. Scarano, S. Bertarione, F. Bonino, A. Damin, S. Bordiga, C. Prestipino, C. Lamberti, A. Zecchina, J. Photochem. Photobiol. A Chem., 2008, 196, 143; DOI: https://doi.org/10.1016/j.jphotochem.2007.07.033.
  19. F. Yang, M. A. Hanna, R. Sun, Biotechnol. Biofuels, 2012, 5, 13; DOI: https://doi.org/10.1186/1754-6834-5-13.
  20. X. Fan, R. Burton, Y. Zhou, Open Fuels Energy Sci. J., 2010, 3, 17; DOI: https://doi.org/10.2174/1876973X01003010017.
  21. A. S. Lyadov, S. N. Khadzhiev, Russ. J. Appl. Chem., 2017, 90, 1727; DOI: https://doi.org/10.1134/S1070427217110015.
  22. Y. Cui, J. D. Atkinson, J. Mater. Chem. A, 2017, 5, 16812; DOI: https://doi.org/10.1039/c7ta02898a.
  23. R. S. Ribeiro, A. M. T. Silva, M. T. Pinho, J. L. Figueiredo, J. L. Faria, H. T. Gomes, Catal. Today, 2015, 240, 61; DOI: https://doi.org/10.1016/j.cattod.2014.03.048.
  24. M. de A. Medeiros, T. M. Cançado, C. M. M. Leite, R. M. Lago, J. Chem. Technol. Biotechnol., 2012, 87, 1654; DOI: https://doi.org/10.1002/jctb.3805.
  25. S. Álvarez-Torrellas, R. S. Ribeiro, H. T. Gomes, G. Ovejero, J. García, Chem. Eng. J., 2016, 296, 277; DOI: https://doi.org/10.1016/j.cej.2016.03.112.
  26. Y. Cui, J. D. Atkinson, Mater. Chem. Phys., 2019, 221, 29; DOI: https://doi.org/10.1016/j.matchemphys.2018.09.037.
  27. M. Gonçalves, C. S. Castro, I. K. V. Boas, F. C. Soler, E. D. C. Pinto, R. L. Lavall, W. A. Carvalho, J. Environ. Chem. Eng., 2019, 7; DOI: https://doi.org/10.1016/j.jece.2019.103059.
  28. Y. Cui, J. D. Atkinson, Chemosphere, 2019, 228, 694; DOI: https://doi.org/10.1016/j.chemosphere.2019.04.181.
  29. C. S. Estes, A. Y. Gerard, J. D. Godward, S. B. Hayes, S. H. Liles, J. L. Shelton, T. S. Stewart, R. I. Webster, H. F. Webster, Carbon N. Y., 2019, 142, 547; DOI: https://doi.org/10.1016/j.carbon.2018.10.074.
  30. H. Dong, C. Feldmann, J. Alloys Compd., 2012, 513, 125; DOI: https://doi.org/10.1016/j.jallcom.2011.10.004.
  31. US Pat. 5646324; Chem. Abstrs, 1995, 123, 83940.
  32. Pat. RF 2681005; Byul. Izobret.[Invention’s Bulletin], 2018, 7 (in Russian).
  33. S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc., 1938, 60, 309; DOI: https://doi.org/10.1021/ja01269a023.
  34. M. Kruk, M. Jaroniec, A. Sayari, Langmuir, 1997, 13, 6267; DOI: https://doi.org/10.1021/la970776m.
  35. M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, Adv. Colloid Interface Sci., 2014, 209, 172; DOI: https://doi.org/10.1016/j.cis.2014.04.002.
  36. E. W. Radoslovich, M. R. Raupach, P. G. Slade, R. M. Taylor, Aust. J. Chem., 1970, 23, 1963; DOI: https://doi.org/10.1071/CH9701963.
  37. A. Ferrari, J. Robertson, Phys. Rev. B — Condens. Matter Mater. Phys., 2000, 61, 14095; DOI: https://doi.org/10.1103/PhysRevB.61.14095.