Examples



mdbootstrap.com



 
Статья
2017

Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes


V. V. EmetsV. V. Emets, I. I. PonomarevI. I. Ponomarev, V. A. GrinbergV. A. Grinberg, N. A. MayorovaN. A. Mayorova, M. Yu. ZharinovaM. Yu. Zharinova, Yu. A. VolkovaYu. A. Volkova, E. A. NizhnikovskiiE. A. Nizhnikovskii, K. M. SkupovK. M. Skupov, D. Yu. RazorenovD. Yu. Razorenov, V. N. AndreevV. N. Andreev, Iv. I. PonomarevIv. I. Ponomarev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517010062
Abstract / Full Text

Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm–2 and the power density of 160 mW cm–2 are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, RussiaV. V. Emets, V. A. Grinberg, N. A. Mayorova, E. A. Nizhnikovskii & V. N. Andreev
  • Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, RussiaI. I. Ponomarev, M. Yu. Zharinova, Yu. A. Volkova, K. M. Skupov, D. Yu. Razorenov & Iv. I. Ponomarev
References
  1. Vielstich, W., Lamm, A., and Gasteiger, H.A., Handbook of Fuel Cells: Fundamentals Technology and Applications, Chichester: John Willey and Sons Ltd., 2003.
  2. Peinemann, K.V. and Nunes, S.P., Membranes for Energy Conversion, Weinheim: Wiley-VCH, 2008, vol. 2.
  3. Grinberg, V.A. and Skundin, A.M., Russ. J. Electrochem., 2010, vol. 46, p. 963.
  4. Costamagna, P. and Srinivasan, S., J. Power Sources, 2001, vol. 102, p. 242.
  5. Marestin, C., Gebel, G., Diat, O., and Mercier, R., Adv. Polym. Sci., 2008, vol. 216, p. 185.
  6. Ponomarev, I.I., Nikolskii, O.G., Volkova, Yu.A., and Zakharov, A.V., Polym. Sci. Ser. A, 1994, vol. 36, p. 1185.
  7. Timofeeva, G.I., Ponomarev, I.I., Khokhlov, A.R., Mercier, R., and Sillion, B., Macromol. Symp., 1996, vol. 106, p. 345.
  8. Ponomarev, I.I. and Nikolsky, O.G., High-Strength, High-Modulus Polynaphthoyleneimidobenzimidazole Film “IPLON”, in Polyimides and Other High-Temperature Polymers, Abadie, M. J. M. and Sillion, B., Eds, Amsterdam: Elsevier Science Ltd., 1991, p. 207.
  9. Ponomarev, I.I., Zharinova, M.Yu., Petrovskii, P.V., and Klemenkova, Z.S., Dokl. Chem., 2009, vol. 429, p. 305.
  10. Huang, Y.J., Ye, Y.S., Yen, Y.C., Tsai, L.D., Hwang, B.J., and Chang, F.C., Int. J. Hydrogen Energy, 2011, vol. 36, p. 15333.
  11. Huang, Y.J., Ye, Y.S., Syu, Y.J., Hwang, B.J., and Chang, F.C., J. Power Sources, 2012, vol. 208, p. 144.
  12. Othman, M.H.D., Ismail, A.F., and Mustafa, A., Malays. Polym. J., 2010, vol. 5, p. 1.
  13. Ponomarev, I.I., Grinberg, V.A., Emets, V.V., Mayorova, N.A., Zharinova, M.Yu., Volkova, Yu.A., Razorenov, D.Yu., Skupov, K.M., Ponomarev, Iv.I., and Nizhnikovsky, E.A., Russ. J. Electrochem., 2016, vol. 52, p. 589.
  14. Ponomarev, I.I., Zharinova, M.Yu., Klemenkova, Z.S., Petrovskii, P.V., and Starikova, Z.A., Russ. Chem. Bull., 2011, vol. 60, p. 512.
  15. Paulus, U.A., Wokaum, A., Scherer, G.G., Schmidt, T.J., Stamenkovic, V., Radmilovic, V., Markovic, N.M., and Ross, P.N., J. Phys. Chem. B, 2002, vol. 106, p. 4181.
  16. Paffet, M.T., Beery, J.G., and Gottesfeld, S., J. Electrochem. Soc., 1988, vol. 135, p. 1431.
  17. Murthi, V.S., Urian, R.C., and Mukerjee, S., J. Phys. Chem. B, 2004, vol. 108, p. 11011.
  18. Jalan, V. and Taylor, E.J., J. Electrochem. Soc., 1983, vol. 130, p. 2299.
  19. Grinberg, V.A., Kulova, T.L., Mayorova, N.A., Dobrochotova, Zh.V., and Pasynsky, A.A., Skundin, A.M., and Khazova, O.A., Russ. J. Electrochem., 2007, vol. 43, p. 75.
  20. Grinberg, V.A., Emets, V.V., Mayorova, N.A., Pasynskii, A.A., Shiryaev, A.A., Vysotskii, V.V., Gerasimov, V.K., Matveev, V.V., Nizhnikovskiy, E.A., and Andreev, V.N., Russ. J. Coord. Chem., 2015, vol. 41, p. 751.