Статья
2019

Magnetic and Electrochemical Properties Study of CoFe2O4 Nanocrystals Synthesized by a Facile Hydrothermal Route


 Hao Li Hao Li , Feng-Bo Xu Feng-Bo Xu , Li-Jun Wu Li-Jun Wu , Tan-Li Han Tan-Li Han , Liu-Qun Fan Liu-Qun Fan , Zhen-Wei Dong Zhen-Wei Dong , Chun-Ying Chao Chun-Ying Chao
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519080093
Abstract / Full Text

Magnetic CoFe2O4@carbon (CFO@C) nanoparticles were synthesized by employing glucose as carbon source via hydrothermal process, and their magnetic and electrochemical properties of CFO@C are both studied in this work. The Ms and Mr values of CFO@C nanoparticles are lower than those of pure CFO samples. The changed magnetic properties may be related to the carbon layer extinguishing the surface magnetic moment with spin canting. Benefiting from the amorphous structure and good electronic conductivity of carbon shells, the CFO@C 20 wt % electrode exhibited the capacity of 201 mA h g–1 at the current density of 500 mA g–1 and high reversible capacity up to 353 mA h g–1 after 100 cycles at the current density of 50 mA g–1, respectively.

Author information
  • College of Chemistry and Chemical Engineering, Xuchang University, 461000, Henan, China

    Hao Li, Feng-Bo Xu, Li-Jun Wu, Tan-Li Han, Liu-Qun Fan, Zhen-Wei Dong & Chun-Ying Chao

References
  1. Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., Freunberger, S.A., Favier, F., and Fontaine, O., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors, Nat. Mater., 2016, vol. 16, p. 446.
  2. Christudas Dargily, N., Thimmappa, R., Manzoor Bhat, Z., Devendrachari, M.C., Kottaichamy, A.R., Gautam, M., Shafi, S.P., and Thotiyl, M.O., A rechargeable hydrogen battery, J. Phys. Chem. Lett., 2018, vol. 9, p. 2492.
  3. Thimmappa, R., Paswan, B., Gaikwad, P., Devendrachari, M.C., Makri Nimbegondi Kotresh, H., Rani Mohan, R., Pattayil Alias, J., and Thotiyl, M.O., Chemically chargeable photo battery, J. Phys. Chem. C, 2015, vol. 119, p. 14010.
  4. Bhat, Z.M., Thimmappa, R., Devendrachari, M.C., Shafi, S.P., Aralekallu, S., Kottaichamy, A.R., Gautam, M., and Thotiyl, M.O., A direct alcohol fuel cell driven by an outer sphere positive electrode, J. Phys. Chem. Lett., 2017, vol. 8, p. 3523.
  5. Xu, J., Ma, J., Fan, Q., Guo, S., and Dou, S., Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries, Adv Mater., 2017, vol. 29, p. 1606454.
  6. Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, p. 363.
  7. Zhang, Y., Jiao, Y., Liao, M., Wang, B., and Peng, H., Carbon nanomaterials for flexible lithium ion batteries, Carbon, 2017, vol. 124, p. 79.
  8. Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B., and Mai, L., Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage, Adv. Mater., 2017, vol. 29, p. 1602300.
  9. Cong, L., Xie, H., and Li, J., Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries, Adv. Energy Mater., 2017, vol. 7, p. 1601906.
  10. Sun, Y., Liu, N., and Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nature Energy, 2016, vol. 1, p. 16071.
  11. Sheng, T., Xu, Y.F., Jiang, Y.X., Huang, L., Tian, N., Zhou, Z.Y., Broadwell, I., and Sun, S.G., Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage, Acc. Chem. Res., 2016, vol. 49, p. 2569.
  12. Ding, Y., Yang, Y., and Shao, H., Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery, Solid State Ionics, 2012, vol. 217, p. 27.
  13. Sharma, Y., Sharma, N., Rao, G.V.S., and Chowdari, B.V.R., Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries, J. Power Sources, 2007, vol. 173, p. 495.
  14. Nuli, Y., Zhang, P., Guo, Z., Liu, H., and Yang, J., NiCo2O4 / C nanocomposite as a highly reversible anode material for lithium-ion batteries, Electrochem. Solid-State Lett., 2008, vol. 11, p. A64.
  15. Sharma, Y., Sharma, N., Subbarao, G., and Chowdari, B., Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries, Solid State Ionics, 2008, vol. 179, p. 587.
  16. Zhang, X., Li, D., Zhu, G., Lu, T., and Pan, L., Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries, J. Colloid Interface Sci., 2017, vol. 499, p. 145.
  17. Wang, Z., Fei, P., Xiong, H., Qin, C., Zhao, W., and Liu, X., CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes, Electrochim. Acta, 2017, vol. 252, p. 295.
  18. Wu, L., Xiao, Q., Li, Z., Lei, G., Zhang, P., and Wang, L., CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance, Solid State Ionics, 2012, vol. 215, p. 24.
  19. Li, Z.H., Zhao, T.P., Zhan, X.Y., Gao, D.S., Xiao, Q.Z., and Lei, G.T., High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries, Electrochim. Acta, 2010, vol. 55, p. 4594.
  20. Zhu, Y., Lv, X., Zhang, L., Guo, X., Liu, D., Chen, J., and Ji, J., Liquid-solid-solution assembly of CoFe2O4/graphene nanocomposite as a high-performance lithium-ion battery anode, Electrochim. Acta, 2016, vol. 215, p. 247.
  21. Sun, X., Zhu, X., Yang, X., Sun, J., Xia, Y., and Yang, D., CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries, Green Energy Environ., 2017, vol. 2, p. 160.
  22. Maaz, K., Mumtaz, A., Hasanain, S.K., and Ceylan, A., Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, J. Magn. Magn. Mater., 2007, vol. 308, p. 289.
  23. Nabiyouni, G., Sharifi, S., Ghanbari, D., and Salavati-Niasari, M., A simple precipitation method for synthesis CoFe2O4 nanoparticles, J. Nanostruct., 2014, vol. 4, p. 317.
  24. Jiang, W., Liu, Y., Li, F., Chu, J., and Chen, K., Superparamagnetic cobalt-ferrite-modified carbon nanotubes using a facile method, Mater. Sci. Eng.: B, 2010, vol. 166, p. 132.
  25. Gonzalez-Sandoval, M.P., Beesley, A.M., Miki-Yoshida, M., Fuentes-Cobas, L., and Matutes-Aquino, J.A., Comparative study of the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation, J. Alloys Compd., 2004, vol. 369, p. 190.
  26. Rajendran, M., Pullar, R.C., Bhattacharya, A.K., Das, D., Chintalapudi, S.N., and Majumdar, C.K., Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size, J. Magn. Magn. Mater., 2001, vol. 232, p. 71.
  27. Meng, Y., Chen, D., and Jiao, X., Synthesis and characterization of CoFe2O4 hollow spheres, Eur. J. Inorg. Chem., 2008, vol. 2008, p. 4019.
  28. Nilmoung, S., Kidkhunthod, P., Pinitsoontorn, S., Rujirawat, S., Yimnirun, R., and Maensiri, S., Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers, Appl. Phys. A, 2015, vol. 119, p. 141.
  29. Varma, P.C.R., Manna, R.S., Banerjee, D., Varma, M.R., Suresh, K.G., and Nigam, A.K., Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: a comparative study, J. Alloys Compd., 2008, vol. 453, p. 298.
  30. García-Otero, J., Porto, M., Rivas, J., and Bunde, A., Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles, Phys. Rev. Lett., 2000, vol. 84, p. 167.
  31. Wang, J., Yang, G., Wang, L., Yan, W., and Wei, W., C@CoFe2O4 fiber-in-tube mesoporous nanostructure: formation mechanism and high electrochemical performance as an anode for lithium-ion batteries, J. Alloys Compd., 2017, vol. 693, p. 110.
  32. Zhao, S., Guo, J., Jiang, F., Su, Q., and Du, G., Porous CoFe2O4 nanowire arrays on carbon cloth as binder-free anodes for flexible lithium-ion batteries, Mater. Res. Bull., 2016, vol. 79, p. 22.
  33. Zhang, W.-M., Wu, X.-L., Hu, J.-S., Guo, Y.-G., and Wan, L.-J., Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater., 2008, vol. 18, p. 3941.
  34. Zhu, T., Chen, J.S., and Lou, X.W., Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries, J. Phys. Chem. C, 2011, vol. 115, p. 9814.
  35. Zhang, M., Yang, X., Kan, X., Wang, X., Ma, L., and Jia, M., Carbon-encapsulated CoFe2O4/graphene nanocomposite as high performance anode for lithium ion batteries, Electrochim. Acta, 2013, vol. 112, p. 727.
  36. Qi, W., Li, P., Wu, Y., Zeng, H., Hou, L., Kuang, C., Yao, P., and Zhou, S., Facile synthesis of CoFe2O4 nanoparticles anchored on graphene sheets for enhanced performance of lithium ion battery, Progr. Nat. Sci.: Mater. Int., 2016, vol. 26, p. 498.
  37. Wang, B., Li, S., Liu, J., Yu, M., Li, B., and Wu, X., An efficient route to a hierarchical CoFe2O4@graphene hybrid films with superior cycling stability and rate capability for lithium storage, Electrochim. Acta, 2014, vol. 146, p. 679.
  38. Ren, S., Zhao, X., Chen, R., and Fichtner, M., A facile synthesis of encapsulated CoFe2O4 into carbon nanofibres and its application as conversion anodes for lithium ion batteries, J. Power Sources, 2014, vol. 260, p. 205.
  39. Xia, H., Zhu, D., Fu, Y., and Wang, X., CoFe2O4–graphene nanocomposite as a high-capacity anode material for lithium-ion batteries, Electrochim. Acta, 2012, vol. 83, p. 166.
  40. Brezesinski, T., Wang, J., Polleux, J., Dunn, B., and Tolbert, S.H., Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors, J. Am. Chem. Soc., 2009, vol. 131, p. 1802.
  41. Wang, J., Polleux, J., Lim, J., and Dunn, B., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C, 2007, vol. 111, p. 14925.
  42. Liu, T.C., Pell, W.G., Conway, B.E., and Roberson, S.L., Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide, J. Electrochem. Soc., 1998, vol. 145, p. 1882.
  43. Wu, L., Li, H., Xie, X., Chai, K., Han, P., Zhang, C., and Yang, C., Study on the effect of liquid nitrogen cold-quenching on electrochemical characteristic of TiO2 complex flakes with edged-curled derived from MAX as anode for lithium ion batteries, J. Alloys Compd., 2019, vol. 780, p. 482.