Special Features of Electro-Membrane Recovery of Acids and Alkalis from the Water-Soluble Wastes of Nuclear Power Plants

T. A. Sedneva T. A. Sedneva , V. I. Ivanenko V. I. Ivanenko , M. L. Belikov M. L. Belikov
Российский электрохимический журнал
Abstract / Full Text

The results of studying of the nitric acid and NaOH + KOH alkalis’ mixture recovery from concentrated solutions in filter-press-type electrodialyzers with anion-exchange, cation-exchange, and bipolar membranes are presented. The necessity of the technological solutions preliminary purification from calcium and boron compounds was established, in order to obtain crystalline boric acid (H3BO3) and gypsum (CaSO4·2H2O). The possibility of obtaining, from purified concentrated salt solutions, acids and alkalis with a concentration of ~300–600 g/L suitable for reuse is shown. This can be provided only by the electrodialysis with anion- and cation-exchange membranes, while electrodialysis with bipolar membranes is complicated by noticeable contamination of both acidic and alkaline solutions with salts.

Author information
  • Tananaev Institute of Rare Element and Mineral Chemistry and Technology, Kol’skii Research Center, Russian Academy of Sciences, 184209, Apatity, Russia

    T. A. Sedneva, V. I. Ivanenko & M. L. Belikov

  1. Niftaliev, S.I., Kozaderova, O.A., and Kim, K.B., Electroconductance of heterogeneous ion-exchange membranes in aqueous salt solutions, J. Electroanal. Chem., 2017, vol. 794, p. 58.
  2. Ferella, F., Michelis, I.De., and Veglio, F., Process for the recycling of alkaline and zinc–carbon spent batteries, J. Power Sources, 2008, № 1, p. 78.
  3. Jaroszek, H. and Dydo, P., Ion-exchange membranes in chemical synthesis—a review, Open Chem., 2016, vol. 14(1), p. 1.
  4. Meng, H., Li, H., Li, Ch., and Li, L., Synthesis of ionic liquid using a four-compartment configuration electrodialyzer, J. Membr. Sci., 2008, vol. 318, p. 1.
  5. Bai, L., Wang, X.L., Nie, Y., Dong, H.F., Zhang, X.P., and Zhang, S.J., Study on the recovery of ionic liquids from dilute effluent by electrodialysis method and the fouling of cation-exchange membrane, Sci. China Chem., 2013, vol. 56, p. 1811.
  6. Li, H., Meng, H., Li, C., and Li, L., Competitive transport of ionic liquids and impurity ions during the electrodialysis process, Desalination, 2009, vol. 245, p. 349.
  7. Forquet, V., Sabaté, C.M., Jacob, G., Guelou, Y., Delalu, H., and Darwich, C., Energetic 2, 2-Dimethyltriazanium Salts: A New Family of Nitrogen-Rich Hydrazine Derivatives, Chem. Asian J., 2015, vol. 10, p. 1668.
  8. Rózsenberszki, T., Komáromy, P., Kőrösi, E., Bakonyi, P., Nemestóthy, N., and Bélafi-Bakó, K., Investigation of Itaconic Acid Separation by Operating a Commercialized Electrodialysis Unit with Bipolar Membranes, Processes, 2020, vol. 8(9), p. 1031.
  9. Melnikov, S., Bondarev, D., Nosova, E., Melnikova, E., and Zabolotskiy, V., Water Splitting and Transport of Ions in Electromembrane System with Bilayer Ion-Exchange Membrane, Membranes, 2020, vol. 10(11), p. 346.
  10. Nir, O., Sengpiel, R.G., and Wessling, M., Closing the cycle: Phosphorus removal and recovery from diluted effluents using acid resistive membranes, Chem. Eng. J., 2018, vol. 346, p. 640.
  11. Gurreri, L., Tamburini, A., Cipollina, A., and Micale, G., Electrodialysis, Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives, Membranes, 2020, no. 10, p. 146.
  12. Shi, L., Hu, Y., Xie, S., Wu, G., Hu, Z., and Zhan, X., Recovery of nutrients and volatile fatty acids from pig manure hydrolysate using two-stage bipolar membrane electrodialysis, Chem. Eng. J., 2018, vol. 334, p. 134.
  13. Patel, A., Mungray, A.A.K., and Mungray, A.A.K., Technologies for the recovery of nutrients, water and energy from human urine: A review, Chemosphere, 2020, vol. 259, p. 127372.
  14. Melnikova, E.D., Pismenskaya, N.D., Bazinet, L., Mikhaylin, S., and Nikonenko, V.V., Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane, Electrochim. Acta, 2018, vol. 285, p. 185.
  15. Rybalkina, O., Tsygurina, K., Melnikova, E., Mareev, S., Moroz, I., Nikonenko, V., and Pismenskaya, N., Partial fluxes of phosphoric acid anions through anion-exchange membranes in the course of NaH2PO4 solution electrodialysis, Int. J. Mol. Sci., 2019, vol. 20, p. 593.
  16. Melnikov, S., Kolot, D., Nosova, E., and Zabolotskiy, V., Peculiarities of transport-structural parameters of ion-exchange membranes in solutions containing anions of carboxylic acids, J. Membr. Sci., 2018, vol. 557, p. 1.
  17. Chechelnitskiy, G.M., Rabinovich, S.M., Sinyavskiy, P.N., Kim, V.V., Tereshchenko, L.I., and Bessonov, O.V., Method for processing liquid radioactive waste from nuclear power plants with boron regulation, Pat. 2012076 (Russia), 1994.
  18. Vladimirov, V.A., Method and installation for the treatment of a radioactive wastes, Pat. 7323613 (USA), 2004.
  19. Sedneva, T.A. and Tikhomirova, I.A., Electromembrane concentration of hydrofluoric acid. Critical Technologies, Membranes (in Russian), 2004, no. 1, p. 35.
  20. Sedneva, T.A. and Lokshin, E.P., Electromembrane Hydrolysis of Cerium and Lanthanum Nitrates, Petroleum Chem., 2012, vol. 52, no. 7, p. 533.
  21. Lokshin, E.P., Tareeva, O.A., and Sedneva, T.A., Method for processing fluorine-containing apatite concentrate, Pat. 2650923 (Russia), 2018.
  22. Sedneva, T.A. and Lokshin, E.P., Electromembrane hydrolysis of cerium and lanthanum nitrates, Membranes Membrane Technol., 2012, vol. 2, no. 2, p. 105.
  23. OOO “Innovacionnoe Predprijatie Shhekinoazot” http://www.azotom.ru/bipolyarnye-membrany/ (in Russian).
  24. AO “MEGA,” http://www.mpline.ru/oborudovanie/membrany (in Russian).
  25. Berezina, N.P., Timofeev, S.V., Rolle, A.L., Fedo-rovich, N.V., and Durand-Vidal, S., Electrical transport and structural properties of perfluorinated membranes Nafion-117 and MF-4SK, Russ. J. Electrochem., 2002, vol. 38, p. 1009.
  26. Berezina, N.P., Kononenko, N.A., Loza, N.V., and Sycheva, A.A.-R., Investigation of the electrochemical behavior of composites based on MF-4SK and polyaniline by the method of membrane voltammetry, Russ. J. Electrochem., 2007, vol. 43, p. 1417.
  27. Ivanenko, V.I., Sedneva, T.A., Lokshin, E.P., and Korneikov, R.I. / Int. Appl. WO 2018/190751, Int. Cl. G21F 9/06, G21F 9/20 (2006.01). Method for treating liquid waste from a nuclear power plant with boron control / Joint Stock Company “Rosenergoatom,” Joint Stock Company “Science and Innovations,” no. PCT/RU2018/000179; appl. 22.03.18; publ. 18.10.18; prior. 12.04.17, no. 2017112521/07 (RU).