Nanoporous Ni3S2 Film on Ni Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Electrolyte

Yu Jun Yang Yu Jun Yang , Xuan Hu Xuan Hu
Российский электрохимический журнал
Abstract / Full Text

In this work, nanoporous Ni3S2 film (Ni3S2/Ni) is in situ synthesized by direct sulfurization of Ni foam under a mild hydrothermal process. Surprisingly, it is found out that the obtained Ni3S2/Ni exhibits outstanding HER activity and excellent stability in acidic electrolyte. The structure and nature of the Ni3S2/Ni are analyzed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM). On Ni3S2/Ni, the onset potential is only −6.23 mV (vs. RHE) while the large exchange current density is 790 µA cm−2 and the Tafel slope is 62.47 mV dec−1. The experimental results demonstrate the potential of Ni3S2/Ni for its replacement of Pt-based catalysts.

Author information
  • School of Chemistry and Chemical Engineering, Xuchang University, Xuchang, 461000, P.R. China

    Yu Jun Yang & Xuan Hu

  1. Morales-Guio, C.G. and Hu, X., Amorphous molybdenum sulfides as hydrogen evolution catalysts, Acc. Chem. Res., 2014, vol. 47, pp. 2671–2681.
  2. Solmaz, R., Gundogdu, A., Doner, A., and Kardas, G., The Ni-deposited carbon felt as substrate for preparation of Pt-modified electrocatalysts: application for alkaline water electrolysis, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 8917–8922.
  3. Pierozynski, B. and Mikolajczyk, T., Cathodic evolution of hydrogen on platinum-modified nickel foam catalyst, Electrocatalysis, 2016, vol. 7, pp. 121–126.
  4. Lu, J., Xiong, T.L., Zhou, W.J., Yang, L.J., Tang, Z.H., and Chen, S.W., Metal nickel foam as an efficient and stable electrode for hydrogen evolution reaction in acidic electrolyte under reasonable overpotentials, ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 5065–5069.
  5. Solmaz, R. and Kardas, G., Hydrogen evolution and corrosion performance of NiZn coatings, Energy Convers. Manag., 2007, vol. 48, pp. 583–591.
  6. Solmaz, R., Doner, A., Dogrubas, M., Erdogan, I.Y., and Kardas, G., Enhancement of electrochemical activity of Raney-type NiZn coatings by modifying with PtRu binary deposits: application for alkaline water electrolysis, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 1432–1440.
  7. Nguyen, T.P., Choi, S., Jeon, J.M., Kwon, K.C., Jang, H.W., and Kim, S.Y., Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. J. Phys. Chem. C, 2016, vol. 120, pp. 3929–3935.
  8. Pham, K.C., Chang, Y.H., McPhail, D.S., Mattevi, C., Wee, A.T.S., and Chua, D.H.C., Amorphous molybdenum sulfide on grapheme-carbon nanotube hybrids as highly active hydrogen evolution reaction catalysts, ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 5961–5971.
  9. Li, W., Wang, X.G., Xiong, D.H., and Liu, L.F., Efficient and durable electrochemical hydrogen evolution using cocoon-like MoS2 with preferentially exposed edges, Int. J. Hydrogen Energy, 2016, vol. 31, pp. 9344–9354.
  10. Xie, J.F., Zhang, J.J., Li, S., Grote, F., Zhang, X.D., Zhang, H., Wang, R.X., Lei, Y., Pan, B.C., and Xie, Y., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution, J. Am. Chem. Soc., 2013, vol. 135, pp. 17881–17888.
  11. Dai, X.P., Du, K.L., Li, Z.Z., Sun, H., Yang, Y., Zhang, X., Li, X.S., and Wang, H., Highly efficient hydrogen evolution catalysis by MoS2-MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids, Chem. Eng. Sci., 2015, vol. 134, pp. 572–580.
  12. Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., and Dai, H.J., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc., 2011, vol. 133, pp. 7296–7299.
  13. Dai, X.P., Du, K.L., Li, Z.Z., Liu, M.Z., Ma, Y.D., Sun, H., Zhang, X., and Yang, Y., Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution, ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 27242–27253.
  14. Yan, Y., Xia, B.Y., Ge, X.M., Zhao, L., Wang, J.Y., and Wang, X., Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution, ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 12794–12798.
  15. Benck, J.D., Hellstern, T.R., Kibsgaard, J., Chakthranont, P., and Jaramillo, T.F., Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials, ACS Catal., 2014, vol. 4, pp. 3957–3971.
  16. Xiang, Z.C., Zhang, Z., Xu, X.J., Zhang, Q., and Yuan, C.W., MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution, Carbon, 2016, vol. 98, pp. 84–89.
  17. Zhang, Y.F., Zuo, L.Z., Zhang, L.S., Huang, Y.P., Lu, H.Y., Fan, W., and Liu, T.X., Cotton wool derived carbon fiber aerogel supported few-layered MoSe2 nanosheets as efficient electrocatalysts for hydrogen evolution, ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 7077–7085.
  18. Zhao, X., Ma, X., Sun, J., Li, D.H., and Yang, X.R., Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution, ACS Nano, 2016, vol. 10, pp. 2159–2166.
  19. Zhu, W.X., Yue, X.Y., Zhang, W.T., Yu, S.X., Zhang, Y.H., Wang, J., and Wang, J.L., Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting, Chem. Commun., 2016, vol. 52, pp. 1486–1489.
  20. Chen, Y.M., Wu, R.X., Jiang, P.P., Bian, G., Kong, L.G., and Dong, Y.M., One-step preparation of nickel sulfide/nickel hydroxide films for electrocatalytic hydrogen generation from water, RSC Adv., 2015, vol. 5, pp. 60674–60680.
  21. Ren, H.T., Xua, W.C., Zhu, S.L., Cui, Z.D., Yang, X.J., and Inoue, A., Synthesis and properties of nanoporous Ag2S/CuS catalyst for hydrogen evolution reaction, Electrochim. Acta, 2016, vol. 190, pp. 221–228.
  22. Ren, X., Wang, W., Ge, R., Hao, S., Qu, F., Du, G., Asiri, A.M., Wei, Q., Chen, L., and Sun, X., An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions, Chem. Commun., 2017, vol. 53, pp. 9000–9003.
  23. Wang, W., Yang, L., Qu, F., Liu, Z., Du, G., Asiri, A.M., Yao, Y., Chen, L., and Sun, X., A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction, J. Mater. Chem. A, 2017, vol. 5, pp. 16585–16589.
  24. Wan, C., Regmi, Y.N., and Leonard, B.M., Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed., 2014, vol. 53, pp. 6407–6410.
  25. Wu, H.B., Xia, B.Y., Yu, L., Yu, X.Y., and Lou, X.W., Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production, Nat. Commun., 2015, vol. 6, pp. 6512–6519.
  26. Xiao, P., Sk, M.A., Thia, L., Ge, X.M., Lim, R.J., Wang, J.Y., Lim, K.H., and Wang, X., Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction, Energy Environ. Sci., 2014, vol. 7, pp. 2624–2629.
  27. You, B., Jiang, N., Sheng, M.L., Bhushan, M.W., and Sun, Y.J., Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting, ACS Catal., 2016, vol. 6, pp. 714–721.
  28. Tang, C., Zhang, R., Lu, W., Wang, Z., Liu, D., Hao, S., Du, G., Asiri, A.M., and Sun, X., Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a highperformance non-noble-metal electrocatalyst, Angew. Chem. Int. Ed., 2017, vol. 56, pp. 842–846.
  29. Liu, T., Liu, D., Qu, F., Wang, D., Zhang, L., Ge, R., Hao, S., Ma, Y., Du, G., Asiri, A.M., Chen, L., and Sun, X., Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter, Adv. Energy Mater., 2017, vol. 7, p. 1700020.
  30. Kucernak, A.R.J., Fahy, K.F., and Sundaram, V.N.N., Facile synthesis of palladium phosphide electrocatalysts and their activity for the hydrogen oxidation, hydrogen evolutions, oxygenreduction and formic acid oxidation reactions, Catal. Today, 2016, vol. 262, pp. 48–56.
  31. Kibsgaard, J. and Jaramillo, T.F., Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction, Angew Chem. Int. Ed., 2014, vol. 53, pp. 14433–14437.
  32. Cabán-Acevedo, M., Stone, M.L., Schmidt, J.R., Thomas, J.G., Ding, Q., Chang, H.C., Tsai, M.L., He, J.H., and Jin, S., Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide, Nat. Mater., 2015, vol. 14, pp. 1245–1253.
  33. Cao, B.F., Veith, G.M., Neuefeind, J.C., Adzic, R.R., and Khalifah, P.G., Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction, J. Am. Chem. Soc., 2013, vol. 135, pp. 19186–19192.
  34. Chen, W.F., Sasaki, K., Ma, C., Frenkel, A.I., Marinkovic, N., Muckerman, J.T., Zhu, Y.M., and Adzic, R.R., Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets, Angew. Chem. Int. Ed., 2012, vol. 51, pp. 6131–6135.
  35. Shibli, S.M.A., Anupama, V.R., Arun, P.S., Jineesh, P., and Suji, L., Synthesis and development of nano WO3 catalyst incorporated Ni-P coating for electrocatalytic hydrogen evolution reaction, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 10090–10102.
  36. Zheng, Y., Jiao, Y., Zhu, Y., Li, L.H., Han, Y., Chen, Y., Du, A., Jaroniec, M., and Qiao, S.Z., Hydrogen evolution by a metal-free electrocatalyst, Nat. Commun., 2014, vol. 5, pp. 3783–3790.
  37. Duan, J.J., Chen, S., Jaroniec, M., and Qiao, S.Z., Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution, ACS Nano, 2015, vol. 9, pp. 931–940.
  38. Liu, Q., Xie, L., Qu, F., Liu, Z., Du, G., Asirid, A.M., and Sun, X., A porous Ni3N nanosheet array as a highperformance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production, Inorg. Chem. Front., 2017, vol. 4, pp. 1120–1124.
  39. Yu, X., Hua, T., Liu, X., Yan, Z., Xu, P., and Du, P. Nickel-based thin film on multiwalled carbon nanotubes as an efficient bifunctional electrocatalyst for water splitting, ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 15395–15402.
  40. Peng, Z., Jia, D., Al-Enizi, A.M., Elzatahry, A.A., and Zheng, G., Electrocatalysts: from water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts, Adv. Energy Mater., 2015, vol. 5, p. 1402031.
  41. Ouyang, C.B., Wang, X., Wang, C., Zhang, X.X., Wu, J.H., Ma, Z.L., Dou, S., and Wang, S.Y., Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction, Electrochim. Acta, 2015, vol. 174, pp. 297–301.
  42. Feng, L.L., Yu, G.T., Wu, Y.Y., Li, G.D., Li, H., Sun, Y.H., Asefa, T., Chen, W., and Zou, X.X., Highindex faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting, J. Am. Chem. Soc., 2015, vol. 137, pp. 14023–14026.
  43. Tang, C., Pu, Z.H., Liu, Q., Asiri, A.M., Luo, Y.L., and Sun, X.P., Ni3S2 nanosheets array supported on Ni foam: a novel efficient three-dimensional hydrogenevolving electrocatalyst in both neutral and basic solutions, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 4727–4732.
  44. Lin, T.W., Liu, C.J., and Dai, C.S., Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection, Appl. Catal. B, 2014, vol. 154–155, pp. 213–220.
  45. Jiang, N., Tang, Q., Sheng, M.L., You, B., Jiang, D.E., and Sun, Y.J., Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles, Catal. Sci. Tech., 2016, vol. 6, pp. 1077–1084.
  46. Zhang, Z.M., Zhao, C.J., Min, S.D., and Qian, X.Z., A facile one-step route to RGO/Ni3S2 for high-performance supercapacitors, Electrochim. Acta, 2014, vol. 144, pp. 100–106.
  47. Yang, Y.J., Li, W.K., and Zi, J.F., Mechanistic study of glucose oxidation on copper sulfide modified glassy carbon electrode, Electrochem. Commun., 2013, vol. 34, pp. 304–307.