Examples



mdbootstrap.com



 
Статья
2022

Mechanism of the Reaction of Tris(trimethylsilyl)silane with Ozone


S. A. GrabovskiyS. A. Grabovskiy
Российский журнал общей химии
https://doi.org/10.1134/S1070363222080114
Abstract / Full Text

Low-temperature (–90°C) ozonolysis of tris(trimethylsilyl)silane gave tris(trimethylsilyl)silanol and 1,1,1-trimethyl-2,2-bis(trimethylsiloxy)disilan-2-ol. The primary isotope effect in the reaction of tris(trimethylsilyl)silane with ozone at –90°C is equal to 5.5 and is consistent with the theoretical value calculated at the B3LYP/6-31+G(2d,p) level of theory assuming abstraction of H(D) from the Si–H(D) bond by ozone. Possible reaction mechanisms, namely radical, ionic, and ozone insertion into the Si–H bond, are discussed.

Author information
  • Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450054, Ufa, RussiaS. A. Grabovskiy
References
  1. Ouellette, R.J. and Marks, D.L., J. Organomet. Chem., 1968, vol. 11, p. 407. https://doi.org/10.1016/0022-328X(68)80064-6
  2. Corey, E.J., Mehrotra, M.M., and Khan, A.U., J. Am. Chem. Soc., 1986, vol. 108, no. 9, p. 2472. https://doi.org/10.1021/ja00269a070
  3. Plesničar, B., Cerkovnik, J., Koller, J., and Kovač, F., J. Am. Chem. Soc., 1991, vol. 113, no. 13, p. 4946. https://doi.org/10.1021/ja00013a034
  4. Cerkovnik, J., Tuttle, T., Kraka, E., Lendero, N., Plesničar, B., and Cremer, D., J. Am. Chem. Soc., 2006, vol. 128, no. 12, p. 4090. https://doi.org/10.1021/ja058065v
  5. Khalitova, L.R., Grabovskii, S.A., and Kabal’nova, N.N., High Energy Chem., 2019, vol. 53, no. 6, p. 435. https://doi.org/10.1134/S0018143919060109
  6. Koenig, M., Barrau, J., and Hamida, N.B., J. Organomet. Chem., 1988, vol. 356, no. 2, p. 133. https://doi.org/10.1016/0022-328X(88)83082-1
  7. Tarunin, B.I., Tarunina, V.N., and Kurskii, Yu.A., Zh. Obshch. Khim., 1988, vol. 58, no. 5, p. 1060.
  8. Shereshovets, V.V., Khursan, S.L., Komissarov, V.D., and Tolstikov, G.A., Russ. Chem. Rev., 2001, vol. 70, no. 2, p. 105. https://doi.org/10.1070/RC2001v070n02ABEH000622
  9. Methoden der organische Chemie, Kropf, H., Ed., Stuttgart: Wiley, 1988, vol. E13, p. 971.
  10. Grabovskii, S.A., Kabal’nova, N.N., Shereshovets, V.V., and Chatgilialoglu, C., Organometallics, 2002, vol. 21, no. 17, p. 3506. https://doi.org/10.1021/om0200095
  11. Grabovskiy, S.A. and Kabal’nova, N.N., Russ. J. Gen. Chem., 2021, vol. 91, no. 12, p. 2391. https://doi.org/10.1134/S1070363221120069
  12. Kraka, E., Cremer, D., Koller, J., and Plesničar, B., J. Am. Chem. Soc., 2002, vol. 124, no. 28, p. 8462. https://doi.org/10.1021/ja012553v
  13. Plesničar, B., Cerkovnik, J., Tekavec, T., and Koller, J., J. Am. Chem. Soc., 1998, vol. 120, no. 31, p. 8005. https://doi.org/10.1021/ja981568z
  14. Derro, E.L., Sechler, T.D., Murray, C., and Lester, M.I.J., J. Phys. Chem. A, 2008, vol. 112, no. 39, p. 9269. https://doi.org/10.1021/jp801232a
  15. Varner, M.E., Harding, M.E., Vázquez, J., Gauss, J., and Stanton, J.F., J. Phys. Chem. A, 2009, vol. 113, no. 42, p. 11238. https://doi.org/10.1021/jp907262s
  16. Zaborovskiy, A.B., Lutsyk, D.S., Prystansky, R.E., Kopylets, V.I., Timokhin, V.I., and Chatgilialoglu, S., J. Organomet. Chem., 2004, vol. 689, p. 2912. https://doi.org/10.1016/j.jorganchem.2004.06.030
  17. Kanabus-Kaminska, J.M., Hawari, J.A., Griller, D., and Chatgilialoglu, C., J. Am. Chem. Soc., 1987, vol. 109, no. 17, p. 5267. https://doi.org/10.1021/ja00251a035
  18. Blackwell, J.H., Kumar, R., and Gaunt, M.J., J. Am. Chem. Soc., 2021, vol. 143, no. 3, p. 1598. https://doi.org/10.1021/jacs.0c12162
  19. Chatgilialoglu, C., Guarini, A., Guerrini, A., and Seconi, G., J. Org. Chem., 1992, vol. 57, no. 8, p. 2207. https://doi.org/10.1021/jo00034a001
  20. Shereshovets, V.V., Galieva, F.A., Shafikov, N.Ya., Sadykov, R.A., Panasenko, A.A., and Komissarov, V.D., Bull. Acad. Sci. USSR, Div. Chem. Sci. 1982, vol. 31, p. 1050. https://doi.org/10.1007/BF00949969
  21. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision C.01, Wallingford CT: Gaussian, 2010.
  22. Zhao, Y. and Truhlar, D.G., Acc. Chem. Res., 2008, vol. 41, no. 2, p. 157. https://doi.org/10.1021/ar700111a
  23. Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, p. 215. https://doi.org/10.1007/s00214-007-0310-x
  24. Alecu, I.M., Zheng, J., Zhao, Y., and Truhlar, D.G., J. Chem. Theor. Comput., 2010, vol. 6, no. 9, p. 2872. https://doi.org/10.1021/ct100326h
  25. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. B, 2009, vol. 113, no. 18, p. 6378. https://doi.org/10.1021/jp810292n
  26. Wiest, O., Houk, K.N., Black, K.A., and Thomas, B., J. Am. Chem. Soc., 1995, vol. 117, no. 33, p. 8594. https://doi.org/10.1021/ja00138a015