Examples



mdbootstrap.com



 
Статья
2022

Dicationic Imidazolium Surfactants with a Hydroxyl Substituent in the Spacer Fragment


R. A. KushnazarovaR. A. Kushnazarova, A. B. MirgorodskayaA. B. Mirgorodskaya, V. A. MikhailovV. A. Mikhailov, I. A. BelousovaI. A. Belousova, T. M. ZubarevaT. M. Zubareva, T. M. Prokop’evaT. M. Prokop’eva, A. D. VoloshinaA. D. Voloshina, S. K. AmerhanovaS. K. Amerhanova, L. Ya. ZakharovaL. Ya. Zakharova
Российский журнал общей химии
https://doi.org/10.1134/S1070363222040077
Abstract / Full Text

Dicationic imidazolium surfactants of the 1,1′-(2-hydroxypropan-1,3-diyl)bis(3-alkyl-1H-imidazol-3-ylium)chloride series with a variable hydrophobic chain length have been synthesized and characterized. The values of their critical micelle concentration have been determined by tensiometry, conductometry and spectrophotometry. Significant antimicrobial activity of these surfactants against a number of pathogenic bacteria and fungi was revealed. It was found that decyl and dodecyl derivatives turned out to be leader compounds, which surpassed reference antibiotics in their action and showed activity against resistant strains. The kinetic parameters reflecting the high catalytic effect of the tested dicationic imidazolium surfactants in the alkaline hydrolysis of 4-nitrophenyl esters of phosphonic, phosphoric, and toluenesulfonic acids have been obtained.

Author information
  • Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420088, Kazan, RussiaR. A. Kushnazarova, A. B. Mirgorodskaya, A. D. Voloshina, S. K. Amerhanova & L. Ya. Zakharova
  • L.M. Litvinenko Institute of Physical Organic Chemistry and Coal Chemistry, 83114, Donetsk, UkraineV. A. Mikhailov, I. A. Belousova, T. M. Zubareva & T. M. Prokop’eva
References
  1. Sar, P., Ghosh, A., Scarso, A., and Saha, B., Res. Chem. Intermed., 2019, vol. 45, p. 6021. https://doi.org/10.1007/s11164-019-04017-6
  2. Myers, D., Surfactant Science and Technology, Hoboken: John Wiley and Sons, 2006, p. 380.
  3. Devínsky, F., Pisárčik, M., and Lukáč, M., Cationic Amphiphiles: Self-Assembling Systems for Biomedicine and Biopharmacy, New York: Nova Science Publishers, 2017, p. 307.
  4. Zakharova, L.Y., Pashirova, T.N., Doktorovova, S., Fernandes, A.R., Sanchez-Lopez, E., Silva, A.M., Souto, S.B., and Souto, E.B., Int. J. Mol. Sci., 2019, vol. 20, p. 5534. https://doi.org/10.3390/ijms20225534
  5. Ghosh, S., Ray, A., and Pramanik, N., Biophys. Chem., 2020, vol. 265. 106429. https://doi.org/10.1016/j.bpc.2020.106429
  6. Menger, F.M. and Keiper, J.S., Angew. Chem. Int. Ed., 2000, vol. 112, p. 1906. https://doi.org/10.1002/1521-3773(20000602)39:11<1906:aid-anie1906>3.0.co;2-q
  7. Zana, R., Adv. Colloid Interface Sci., 2002, vol. 97, p. 205. https://doi.org/10.1016/S0001-8686(01)00069-0
  8. Sharma, R., Kamal, A., Abdinejad, M., Kumar Mahajan, R., and Kraatz, H.-B., Adv. Colloid Interface Sci., 2017, vol. 248, p. 35. https://doi.org/10.1016/j.cis.2017.07.032
  9. Mondal, M.H., Roy, A., Malik, S., Ghosh, A., and Saha, B., J. Res. Chem. Intermed., 2016, vol. 42, p. 1913. https://doi.org/10.1007/s11164-015-2125-z
  10. Jungnickel, C., Łuczak, J., Ranke, J., Fernández, J.F., Müller, A., and Thöming, J., Colloids Surf. (A), 2008, vol. 316, p. 278. https://doi.org/10.1016/j.colsurfa.2007.09.020
  11. Kumar, H. and Kaur, G., Front Chem., 2021, vol. 9, p. 667941. https://doi.org/10.3389/fchem.2021.667941
  12. Bhadani, A., Misono, T., Singh, S., Sakai, K., Sakai, H., and Abe, M., Adv. Colloid Interface Sci., 2016, vol. 231, p. 36. https://doi.org/10.1016/j.cis.2016.03.005
  13. Kamboj, R., Singh, S., Bhadani, A., Kataria, H., and Kaur, G., Langmuir, 2012, vol. 28, p. 11969. https://doi.org/10.1021/la300920p
  14. Shaheen, A., Mir, A.W., Arif, R., and Wani, A.L., Colloid Interface Sci. Commun., 2020, vol. 36, p. 100257. https://doi.org/10.1016/j.colcom.2020.100257
  15. Sarıkaya, İ., Bilgen, S., Ünver, Y., İnan Bektaş, K., and Akbaş, H., J. Surfactants Deterg., 2021, vol. 24, p. 909. https://doi.org/10.1002/jsde.12532
  16. Shaheen, A., Mir, A.W., Arif, R., and Bala, R., J. Surfactants Deterg., 2021, vol. 24, p. 575. https://doi.org/10.1002/jsde.12472
  17. Voloshina, A.D., Gumerova, S.K., Sapunova, А.S., Kulik, N.V., Mirgorodskaya, A.B., Kotenko, A.A., Prokopyeva, T.M., Mikhailov, V.A., Zakharova, L.Y., and Sinyashin, O.G., Biochim. Biophys. Acta Gen. Subj., 2020, vol. 1864. 129728. https://doi.org/10.1016/j.bbagen.2020.129728
  18. Amerkhanova, S.K., Voloshina, A.D., Mirgorodskaya, A.B., Lyubina, A.P., Kuznetsova, D.A., Kushnazarova, R.A., Mikhailov, V.A., and Zakharova, L.Y., Int. J. Mol. Sci., 2021, vol. 22, p. 13148. https://doi.org/10.3390/ijms222313148
  19. Cognigni, A., Gaertner, P., Zirbs, R., Peterlik, H., Prochazka, K., Schröder, C., and Bica, K., Phys. Chem. Chem. Phys., 2016, vol. 18, p. 13375. https://doi.org/10.1039/c6cp00493h
  20. Prokop’eva, T.M., Mirgorodskaya, A.B., Belousova, I.A., Zubareva, T.M., Turovskaya, M.K., Razumova, N.G., Gaidash, T.S., and Mikhailov, V.A., Chem. Safety Sci., 2021, vol. 5, p. 8.
  21. Belousova, I.A., Zubareva, T.M., Gaidash, T.S., Razumova, N.G., Turovskaya, M.K., Panchenko, B.V., Prokopyeva, T.M., and Mikhailov, V.A., Russ J. Org. Chem., 2021, vol. 57, p. 338. https://doi.org/10.1134/S1070428021030039
  22. Wang, L., Liu, J., Huo, S., Deng, Q., Yan, T., Ding, L., Zhang, C., Meng, L., and Lu, Q., J. Surfactants Deterg., 2014, vol. 17, no. 6, p. 1107. https://doi.org/10.1007/s11743-014-1615-0
  23. Liu, X.F., Dong, L.L., and Fang, Y., J. Surfactants Deterg., 2011, vol. 14, p. 203. https://doi.org/10.1007/s11743-010-1234-3
  24. Zakharova, L.Ya., Kashapov, R.R., Pashirova, T.N., Mirgorodskaya, A.B., and Sinyashin, O.G., Mendeleev Commun., 2016, vol. 26, p. 457. https://doi.org/10.1016/j.mencom.2016.11.001
  25. Poole, K., Clin. Microbiol. Infect., 2004, vol. 10, no. 1, p. 12. https://doi.org/10.1111/j.1469-0691.2004.00763.x
  26. Heerklotz, H.Q., Rev. Biophys., 2008, vol. 41, p. 205. https://doi.org/10.1017/S0033583508004721
  27. Zakharova L.Ya., Mirgorodskaya, A.B., Zhiltsova, E.P., Kudryavtseva, L.A., and Konovalov, A.I., Molecular Encapsulation: Organic Reactions in Constrained Systems, Chichester: John Willey and Sons, 2010, p. 397. https://doi.org/10.1002/9780470664872.ch15
  28. Sorella, G.L., Strukul, G., and Scarso, A., Green Chem., 2015, vol. 17, p. 644. https://doi.org/10.1039/C4GC01368A
  29. Dwars, T., Paetzold, E., and Oehme, G., Angew. Chem. Int. Ed., 2005, vol. 44, p. 7174. https://doi.org/10.1002/anie.200501365
  30. Berezin, I.V., Varfolomeev, S.D., and Martinek, K., Russ. Chem. Rev., 1973, vol. 42, no. 10, p. 1729. https://doi.org/10.1070/RC1973v042n10ABEH002744
  31. Bunton, C.A. and Ionescu, L.G., J. Am. Chem. Soc., 1973, vol. 95, p. 2912. https://doi.org/10.1021/ja00790a030