Examples



mdbootstrap.com



 
Статья
2018

Physicochemical Properties of Li6V5O15 as the Cathode Material for Lithium-Ion Batteries


M. S. Shchelkanova M. S. Shchelkanova , G. Sh. Shekhtman G. Sh. Shekhtman , E. G. Vovkotrub E. G. Vovkotrub , S. V. Plaksin S. V. Plaksin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518090124
Abstract / Full Text

Lithium-vanadium oxide with the formal composition Li6V5O15, uniform microsctructure, and the particle size of 100 nm is synthesized by a solution method. The synthesized compound is characterized by the methods of X-ray diffraction analysis, Raman spectroscopy, and synchronous thermal analysis. The total electric conductivity is measured by the method of impedance spectroscopy and its electronic component is estimated by dc method. In the temperature range of 200–400°C, Li6V5O15 represents a mixed electronic- ionic conductor with predomination of the ionic component and is thermally stable up to 550°С. Preliminary tests of a laboratory model of electrochemical cell Li|LiPF6|Li6V5O15 are carried out.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    M. S. Shchelkanova, G. Sh. Shekhtman, E. G. Vovkotrub & S. V. Plaksin

References
  1. Slobodin, B.V., Vanadaty s-elementov (Vanadates of s-Elements), Yekaterinburg: Ural Branch, RAS, 2008.
  2. Whittingham, S., Lithium batteries and cathode materials, Chem. Rev, 2004, vol. 104, p. 4271.
  3. Gong, H. and Qian, Y., Orthorhombic γ-LiV2O5 as cathode materials in lithium ion batteries: synthesis and property, Chin. J. Chem. Phys., 2013, vol. 26, p. 597.
  4. Bensalah, N. and Dawood, H., Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries, J. Material Sci. Eng., 2016, vol. 5, p. 258.
  5. Zheng, H., Liufei, C., Liang, C., Yafei, K., Haihui, Z., Chaopeng, F., and Zhongxue, C., Preparation, characterization, and lithium intercalation behavior of LiVO3 cathode material for lithium-ion batteries, J. Phys. Chem. C, 2016, vol. 120, p. 3242.
  6. Hua, S., Zhong, G., and Jiang, N., Electrochemical behaviour of vanadium bronze Li6V5O15 cathode in a secondary lithium battery, J. Power Sources, 1996, vol. 63, p. 93.
  7. PDF2 (JCPDS-ICCD) (Joint Committee of Powder Diffraction Standards).
  8. Tang, S.H., Shen, Z.X., Ong, C.W., and Kuok, M.H., Raman spectroscopic study of LiVO3 and LiVO3·2H2O, J. Mol. Struct., 1995, vol. 354, p. 29.
  9. Brooker, M.H. and Bates, J.B., Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3, J. Chem. Phys., 1971, vol. 54, p. 4788.
  10. Heyns, A.M. and Venter, M.W., The vibrational spectra of NH4VO3 at elevated temperatures and pressures, Z. Naturforsch., 1987, vol. 42b, p. 843.
  11. Fotiev, A.A., Slobodin, B.V., and Hodos, M.Ya., Vanadaty. Sostav, sintez, struktura, svoistva (Vanadates. Composition, Synthesis, Structure, Properties), Moscow: Nauka. 1988.
  12. Patil, R.T., Patil, N.B., Kashid, A.P., and Chavan, S.H., Effect of rare-earth ion on electrical conductivity of ferroelectrics KVO3 and LiVO3, Ferroelectrics, 1991, vol. 115, p. 97.
  13. Muller, Ch., Valmalette, J.C., Soubeyroux, J.L., Bouree, F., and Gavarri, J.R., Structural disorder and ionic conductivity in LiVO3: a neutron powder diffraction study from 340 to 890 K, J. Solid State Chem., 2001, vol. 156, p. 379.
  14. Shannon, R.D. and Calvo, C., Crystal structure of LiVO3, Can. J. Chem., 1973, vol. 51, p. 265.
  15. Huang, Z., Cao, L., Chen, L., Kuang, Y., Zhou, H., Fu, C., and Chen, Z., Preparation, characterization, and lithium intercalation behavior of LiVO3 cathode material for lithium-ion batteries, J. Phys. Chem., 2016, vol. 120, p. 3242.
  16. Kosova, N.V., Rezepova, D.O., and Slobodyuk, A.V., Effect of annealing temperature on the structure and electrochemistry of LiVO3, Electrochim. Acta, 2015, vol. 167, p. 75.