Examples



mdbootstrap.com



 
Статья
2021

Heterogenized homogeneous catalytic systems for the oxidation of carbon monoxide and propane


E. G. ChepaikinE. G. Chepaikin, G. N. MenchikovaG. N. Menchikova, S. I. PomogailoS. I. Pomogailo, V. M. MartynenkoV. M. Martynenko, A. B. KornevA. B. Kornev, E. V. KhramovE. V. Khramov, N. S. SmirnovaN. S. Smirnova, I. A. YakushevI. A. Yakushev
Российский химический вестник
https://doi.org/10.1007/s11172-021-3244-x
Abstract / Full Text

Heterogenized catalysts were prepared by the immobilization of the homogeneous catalytic systems containing the rhodium complexes, copper compounds, and perfluoroorganic acids onto porous carriers. The activity of the catalysts was studied in the processes of CO oxidation and co-oxidation of CO and propane. The state of the catalyst components was determined and the possibility of their interaction was evaluated by X-ray spectroscopy (XANES and EXAFS) and electrospray mass spectrometry (ESI-MS). The oxidation of CO on the RhCl3-CuCl2-C3F7COOH/γ-Al2O3 catalyst in a flow reactor at 70–80 °C and atmospheric pressure occurs in an oscillating mode. The co-oxidation of propane and CO at 80–95 °C and a pressure of 1.0–1.5 MPa is basically possible but occurs with a low yield of propane oxygenates.

Author information
  • A. G. Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 ul. Akad. Osip’yana, 142432, Chernogolovka, Moscow Region, Russian FederationE. G. Chepaikin, G. N. Menchikova & S. I. Pomogailo
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian FederationV. M. Martynenko & A. B. Kornev
  • National Research Center “Kurchatov Institute”, 1 pl. Akad. Kurchatova, 223182, Moscow, Russian FederationE. V. Khramov
  • N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991, Moscow, Russian FederationN. S. Smirnova & I. A. Yakushev
References
  1. A. E. Shilov, G. B. Shul’pin, Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Comlexes, Kluwer Academic Publishers, New York-Boston-Dordrecht-Moscow, 2000, 536 pp.; DOI: https://doi.org/10.1007/0-306-46945-6.
  2. V. S. Arutyunov, O. V. Krylov, Russ. Chem. Rev., 2005, 74, 1111; DOI: https://doi.org/10.1070/RC2005v074n12ABEH001199.
  3. C. Masters, Homogeneous Transition-Metal Catalysis, Cristian Solvesen Ltd., Edinburg-London-New York, 1981.
  4. E. G. Chepaikin, A. P. Bezruchenko, A. A. Leshcheva, G. N. Boiko, I. V. Kuzmenkov, E. H. Grigoryan, A. E. Shilov, J. Mol. Catal., A, Chem., 2001, 169, 89; DOI: https://doi.org/10.1016/S1381-1169(01)00046-2.
  5. A. Sen, Acc. Chem. Res., 1998, 31, 550; DOI: https://doi.org/10.1021/AR970290X.
  6. E. G. Chepaikin, A. P. Bezruchenko, A. A. Leshcheva, Kinet. Catal., 2002, 43, 507.
  7. E. G. Chepaikin, A. P. Bezruchenko, G. N. Boiko, A. A. Leshcheva, Petrol. Chem., 2003, 43, 395.
  8. E. G. Chepaikin, G. N. Menchikova, S. I. Pomogailo, Petrol. Chem., 2020, 60, 1260; DOI: https://doi.org/10.1134/S096554412011002X.
  9. E. G. Chepaikin, Russ. Chem. Rev., 2011, 80, 363; DOI: https://doi.org/10.1070/RC2011v080n04ABEH004131.
  10. E. G. Chepaikin, V. N. Borshch, J. Organomet. Chem., 2015, 793, 78; DOI: https://doi.org/10.1016/J.JORGANCHEM.2015.03.021.
  11. N. F. Goldshleger, M. B. Tyabin, A. E. Shilov, A. A. Shteinman, Zh. Fiz. Khim. [J. Phys. Chem.], 1969, 43, 2174 (in Russian).
  12. E. G. Chepaikin, G. N. Menchikova, S. I. Pomogailo, Russ. Chem. Bull., 2019, 68, 1465; DOI: https://doi.org/10.1007/s11172-019-2581-5.
  13. D. Munz, T. Strassner, Inorg. Chem., 2015, 54, 5043; DOI: https://doi.org/10.1021/IC502515X.
  14. A. A. Shteinman, J. Organomet. Chem., 2015, 793, 34; DOI: https://doi.org/10.1016/J.JORGANCHEM.2015.03.020.
  15. G. B. Shul’pin, Catalysts, 2016, 6, No. 4, 50; DOI: https://doi.org/10.3390/CATAL60400501
  16. N. J. Gunsalus, A. Koppaka, S. H. Park, S. M. Bischof, B. G. Hashiguchi, R. A. Periana, Chem. Rev., 2017, 117, 8521; DOI: https://doi.org/10.1021/ACS.CHEMREV.6B00739.
  17. D. S. Nesterov, O. V. Nesterova, A. J. L. Pombeiro, Coord. Chem. Rev., 2018, 355, 199; DOI: https://doi.org/10.1016/j.ccr.2017.08.009.
  18. B. Ravel, M. Newville, J. Synchrotron Radiat., 2005, 12, 537; DOI: https://doi.org/10.1107/S0909049505012719.
  19. M. Newville, J. Synchrotron Radiat., 2001, 8, 322; DOI: https://doi.org/10.1107/S0909049500016964.
  20. E. G. Chepaikin, A. P. Bezruchenko, G. N. Menchikova, O. P. Tkachenko, L. M. Kustov, A. V. Kulikov, Russ. Chem. Bull., 2017, 66, 1934; DOI: https://doi.org/10.1007/s11172-017-1969-3.
  21. E. G. Chepaikin, A. P. Bezruchenko, G. N. Menchikova, O. P. Tkachenko, L. M. Kustov, A. V. Kulikov, Kinet. Catal., 2018, 59, 150; DOI: https://doi.org/10.1134/S0023158418020039.
  22. L. G. Bruk, A. V. Ustyugov, E. A. Katsman, L. D. Iskhakova, I. V. Oshanina, O. P. Tkachenko, L. M. Kustov, O. N. Temkin, Kinet. Catal., 2017, 58, 1794; DOI: https://doi.org/10.1134/S0023158417020033.
  23. J. F. Goellner, B. C. Gates, G. N. Vayssilov, N. Rösch, J. Am. Chem. Soc., 2000, 122, 8056; DOI: https://doi.org/10.1021/JA001209F.
  24. A. J. Liang, R. Craciun, M. Chen, T. G. Kelly, P. W. Kletnieks, J. F. Haw, D. A. Dixon, B. C. Gates, J. Am. Chem. Soc., 2009, 131, 8460; DOI: https://doi.org/10.1021/JA900041N.
  25. A. Vityuk, H. A. Aleksandrov, G. N. Vayssilov, S. Ma, O. S. Alexeev, M. D. Amiridis, J. Phys. Chem. C, 2014, 118, 26772; DOI: https://doi.org/10.1021/jp507526g.
  26. J. E. Perez-Aguilar, C.-Y. Chen, J. T. Hughes, C.-Y. Fang, B. C. Gates, J. Am. Chem. Soc., 2020, 142, 11474; DOI: https://doi.org/10.1021/JACS.0C03730.