Examples



mdbootstrap.com



 
Статья
2019

Some Observations on the Electrochemical Reactions of Bisphenol A on Polycrystalline Gold in Contact with 0.1 M Aqueous NaClO4 Solution


K. J. SzekeresK. J. Szekeres, É. FeketeÉ. Fekete, M. UjváriM. Ujvári, S. VesztergomS. Vesztergom, V. V. KondratievV. V. Kondratiev, G. G. LángG. G. Láng
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519110132
Abstract / Full Text

Experimental results are presented on the electrochemical behavior of BPA at a gold | 0.1 M sodium perchlorate electrode. During the cycling of the electrode potential an adherent thin polymer layer was formed on the electrode. The film buildup process was followed in situ with an electrochemical quartz crystal microbalance (EQCM) and ex situ by electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used for the study of the structure/morphology of the deposited polymer coating. The results imply that polymerization and degradation of the BPA monomer may occur simultaneously during its electrochemical oxidation.

Author information
  • Department of Physical Chemistry, Institute of Chemistry, Laboratory of Electrochemistry and Electroanalytical Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary

    K. J. Szekeres, É. Fekete, M. Ujvári, S. Vesztergom & G. G. Láng

  • Chemical Department, St. Petersburg State University, 198504, St. Petersburg, Russia

    V. V. Kondratiev

References
  1. Suzuki, A., Sugihara, A., Uchida, K., Sato, T., Ohta, Y., Kats, Y., Watanabe, H., and Iguchi, T., Developmental effects of perinatal exposure to bisphenol-A and diethylstilbestrol on reproductive organs in female mice, Reprod. Toxicol., 2002, vol. 16, p. 107.
  2. Kim, H.S., Han, S.Y., Yoo, S.D., Lee, B.M., and Park, K.L., Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays, J. Toxicol. Sci., 2001, vol. 26, p. 111.
  3. Rochester, J.R. and Bolden, A.L., Bisphenol S and F systematic review and comparison of the hormonal activity of bisphenol A substitutes, Environ. Health Perspect., 2015, vol. 123, p. 643.
  4. Petrovic, M., Eljarrat, E., De Alda, M.L., and Barceló, D., Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data, Anal. Bioanal. Chem., 2004, vol. 378, p. 549.
  5. EFSA CEF Panel, Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: executive summary, EFSA J., 2015, vol. 13, p. 23.
  6. Giulivo, M., Lopez de Alda, M., Capri, E., and Barceló, D., Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review, Environ. Res., 2016, vol. 151, p. 251.
  7. MSC unanimously agrees that Bisphenol A is an endocrine disruptor. https://echa.europa.eu/-/msc-unanimously-agrees-that-bisphenol-a-is-an-endocrine-disruptor.
  8. BPA update: working group to start reviewing new studies. http://www.efsa.europa.eu/en/press/news/180904.
  9. ECHA (European Chemicals Agency) and EFSA (European Food Safety Authority) with the technical support of the Joint Research Centre (JRC), Andersson, N., Arena, M., Auteri, D., Barmaz, S., Grignard, E., Kienzler, A., Lepper, P., Lostia, A.M., Munn, S., Parra Morte, J.M., Pellizzato, F., Tarazona, J., Terron, A., and Van der Linden, S., Guidance for the identification of endocrine disruptors in the context of Regulations (EU), no. 528/2012 (EC) no. 1107/2009, EFSA J., 2018, vol. 16, 5311 (pp. 1–135).
  10. Rajeshwar, K. and Ibáñez, J.G., Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement, New York: Acad. Press, 1997.
  11. Rudd, E. and Conway, B.E., Proc. Electrochemical Society Symp. on Water Purification by Photocatalytic, Photoelectrochemical Procedures and Electrochemical Procedures, Pennington, NJ: Electrochemical Society, 1994, p. 94.
  12. Boscolo Boscoletto, A., Gottardi, F., Milan, L., Pannocchia, P., Tartari, V., Tavan, M., Amadelli, R., De Battisti, A., Barbieri, A., Patracchini, D., and Battaglin, G., Electrochemical treatment of bisphenol-A containing wastewaters, J. Appl. Electrochem., 1994, vol. 24, p. 1052.
  13. Matsumoto, K., David B Tiu., Kawamura, A., Advincula, R.C., and Miyata, T., QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix, Polym. J., 2016, vol. 48, p. 525.
  14. Gatidou, G., Thomaidis, N.S., Stasinakis, A.S., and Lekkas, T.D., Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry, J. Chromatogr. A, 2007, vol. 1138, p. 32.
  15. Ballesteros-Gomez, A., Rubio, S., and Perez-Bendito, D., Analytical methods for the determination of bisphenol A in food, J. Chromatogr. A, 2009, vol. 1216, p. 449.
  16. Panizza, M. and Cerisola, G., Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, vol. 109, p. 6541.
  17. Dong, X., Qi, X., Liu, N., Yang, Y., and Piao, Y., Direct electrochemical detection of bisphenol A using a highly conductive graphite nanoparticle film electrode, Sensors, 2017, vol. 17, p. 836.
  18. Li, X., Cui, Y., Feng, Y., Xie, Z., and Gu, J., Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res., 2005, vol. 39, p. 1972.
  19. Mengoli, G. and Musiani, M.M., Protective coatings on iron by anodic oxidation of phenols in oxalic acid medium, Electrochim. Acta, 1986, vol. 31, p. 201.
  20. Kuramitz, H., Nakata, Y., Kawasaki, M., and Tanaka, S., Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode, Chemosphere, 2001, vol. 45, p. 37.
  21. Cui, Y., Li, X., and Chen, G., Electrochemical degradation of bisphenol A on different anodes, Water Res., 2009, vol. 43, p. 1968.
  22. Obirai, J., Bedioui, F., and Nyokong, T., Electro-oxidation of phenol and its derivatives on poly-Ni(OH)TPhPyPc modified vitreous carbon electrodes, J. Electroanal. Chem., 2005, vol. 576, p. 323.
  23. Agboola, B.O., Ozoemena, K.I., and Nyokong, T., Electrochemical properties of benzylmercapto and dodecylmercapto tetra substituted nickel phthalocyanine complexes: electrocatalytic oxidation of nitrite, Electrochim. Acta, 2006, vol. 51, p. 6470.
  24. Agboola, B. and Nyokong, T., Electrocatalytic oxidation of chlorophenols by electropolymerised nickel(II) tetrakis benzylmercapto and dodecylmercapto metallophthalocyanines complexes on gold electrodes, Electrochim. Acta, 2007, vol. 52, p. 5039.
  25. Chauke, V., Matemadombo, F., and Nyokong, T., Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni–O–Ni bridges, J. Hazard. Mater., 2010, vol. 178, p. 180.
  26. Zhu, Y., Zhou, C., Yan, X., Yan, Y., and Wang, Q., Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum, Anal. Chim. Acta, 2015, vol. 883, p. 81.
  27. Hou, C., Tang, W.X., Zhang, C., Wang, Y.F., and Zhu, N.N., A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles, Electrochim. Acta, 2014, vol. 144, p. 324.
  28. Piao, Y., Han, D.J., and Seo, T.S., Highly conductive graphite nanoparticle based enzyme biosensor for electrochemical glucose detection, Sens. Actuat. B-Chem., 2014, vol. 194, p. 454.
  29. Nikoleli, G., Nikolelis, D.P., Tzamtzis, N., and Psaroudakis, N., A selective immunosensor for D-dimer based on antibody immobilized on a graphene electrode with incorporated lipid films, Electroanalysis, 2014, vol. 26, p. 1522.
  30. Varmira, K., Saed-Mocheshi, M., and Jalalvand, A.R., Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: a comprehensive review, Sens. Bio-Sens. Res., 2017, vol. 15, p. 17.
  31. Monzo, J., Malewski, Y., Vidal-Iglesias, F.J., Solla-Gullon, J., and Rodriguez, P., Electrochemical oxidation of small organic molecules on Au nanoparticles with preferential surface orientation, ChemElectroChem, 2015, vol. 2, p. 958.
  32. Inzelt, G. and Láng, G.G., Electrochemical Impedance Spectroscopy (EIS) for Polymer Characterization, in Electropolymerization: Concepts, Materials and Applications, Weinheim: Wiley, 2010.
  33. Zalka, D., Kovács, N., Szekeres, K., Ujvári, M., Vesztergom, S., Eliseeva, S., Kondratiev, V., and Láng, G.G., Determination of the charge transfer resistance of poly(3,4-ethylenedioxythiophene)-modified electrodes immediately after overoxidation, Electrochim. Acta, 2017, vol. 247, p. 321.
  34. Inzelt, G. and Láng, G., Impedance analysis of poly(tetracyanoquinodimethane) electrodes: effect of electrolyte concentration and temperature, Electrochim. Acta, 1991, vol. 36, p. 1355.
  35. Szekeres, K.J., Hegedus, K., Ujvári, M., and Láng, G.G., Investigation of the electrochemical properties of poly(3,4-ethylenedioxypyrrole) films electrodeposited from aqueous solutions, J. Electroanal. Chem., 2018, vol. 826, p. 16.
  36. Inzelt, G., Conducting Polymers: a New Era in Electrochemistry, Berlin, Heidelberg: Springer, 2012.
  37. Láng, G.G., Ujvári, M., Vesztergom, S., Kondratiev, V., Gubicza, J., and Szekeres, K.J., The electrochemical degradation of poly(3,4-ethylenedioxythiophene) films electrodeposited from aqueous solutions, Z. Phys. Chem., 2016, vol. 230, p. 1281.
  38. Kuramitz, H., Matsushita, M., and Tanaka, S., Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode, Water Res., 2004, vol. 38, p. 2331.
  39. Gözmen, B., Oturan, M.A., Oturan, N., and Erbatur, O., Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent, Environ. Sci. Technol., 2003, vol. 37, p. 3716.
  40. Maeda, H., Okada, T., Matsumoto, Y., Katayama, K., Yamauchi, Y., and Ohmori, H., Electrochemical coating with poly(phenylene oxide) films bearing oligoether groups as a tool for elimination of protein adsorption to electrode surface, Anal. Sci., 1999, vol. 15, p. 633.
  41. Zhang, J., Li, Q., Chena, M., Li, H., and Xu, Z., Electrochemically monitoring the removal of bisphenol A based on its anodic deposition at an ITO electrode, Sens. Actuat. B Chem., 2011, vol. 160, p. 784.
  42. Pereira, G.F., Rocha-Filho, R.C., Bocchi, N., and Biaggio, S.N., Electrochemical degradation of bisphenol A using a flow reactor with a boron-doped diamond anode, Chem. Eng. J., 2012, vols. 198–199, p. 282.
  43. Li, Q., Li, H., Zhang, J., and Xu, Z., A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode, Sens. Actuat. B Chem., 2011, vol. 155, p. 730.