Green Iron Oxide Nanoparticles as a Modifier of Carbon Paste Electrode for Electrochemical Estimation of Paracetamol in Pharmaceutical Samples

I. M. A. Hasan I. M. A. Hasan , A. R. Tawfik A. R. Tawfik , F. H. Assaf F. H. Assaf
Российский электрохимический журнал
Abstract / Full Text

Iron oxide nanoparticles (IONPs) were green synthesized using an aqueous leaves extract of Christ’s thorn jujube and were characterized by TGA, FTIR, XRD, HRTEM and FESEM. A carbon paste electrode (CPE) modified with the synthesized iron oxide nanoparticles (IONPs–CPE) was fabricated. The new IONPs–CPE sensor was employed to investigate the electrochemical behavior of paracetamol (PA) in the BR buffer solution. The impact of supporting electrolyte, pH and scan rate has been contemplated. High electrocatalytic activity, low detection limit, good selectivity and stability appeared to the modified electrode towards PA determination. The LOD and LOQ of PA were about 0.287 and 0.871 µM with a linear dynamic range of 0.8–10 µM. In addition, the IONPs–CPE has been used to determine PA in commercial tablets samples.

Author information
  • Chemistry Department, Faculty of Science, South Valley University, 83523, Qena, Egypt

    I. M. A. Hasan, A. R. Tawfik & F. H. Assaf

  1. Goyal, R.N. and Singh, S.P., Voltammetric determination of paracetamol at C60-modified glassy carbon electrode, Electrochim. Acta, 2006, vol. 51, p. 3008.
  2. Bosch, M.E., Sánchez, A.R., Rojas, F.S., and Ojeda, C.B., Determination of paracetamol: historical evolution, J. Pharm. Biomed. Anal., 2006, vol. 42, p. 291.
  3. Moffat, A.C., In Clarke’s Isolation and Identification of Drugs, 2nd ed., London: Pharmaceutical Press, 1986, p. 492.
  4. Srivastava, M.K., Ahmad, S., Singh, D., and Shukla, I.C., Titrimetric determination of dipyrone and paracetamol with potassium hexacyanoferrate (III) in an acidic medium, Analyst, 1985, vol. 110, p. 735.
  5. Ayora, C.M., Pascual, R.M., Ruiz, M.A., Fernández, D.C.M., and Molina, D.A., Fast determination of paracetamol by using a very simple photometric flow-through sensing device, J. Pharm. Biomed. Anal., 2000, vol. 22, p. 59.
  6. Vilchez, J., Blanc, R., Avidad, R., and Navalón, A., Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids, J. Pharm. Biomed. Anal., 1995, vol. 13, p. 1119.
  7. Lau, O.W., Luk, S.F., and Cheung, Y.M., Simultaneous determination of ascorbic acid, caffeine and paracetamol in drug formulations by differential-pulse voltammetry using a glassy carbon electrode, Analyst, 1989, vol. 114, p. 1047.
  8. Ravisankar, S., Vasudevan, M., Gandhimathi, M., and Suresh, B., Reversed phase HPLC method for the estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations, Talanta, 1998, vol. 46, p. 1577.
  9. Roy, J., Saha, P., Sultana, S., and Kenyon, A.S., Rapid screening of marketed paracetamol tablets: use of thin-layer chromatography and a semiquantitative spot test, Bull. World Health Org., 1997, vol. 75, p. 19.
  10. Knochen, M., Giglio, J., and Reis, B.F., Flow-injection spectrophotometric determination of paracetamol in tablets and oral solutions, J. Pharm. Biomed. Anal., 2003, vol. 33, p. 191.
  11. Ramos, M.L., Tyson, J.F., and Curran, D.J., Determination of acetaminophen by flow injection with on-line chemical derivatization: Investigations using visible and FTIR spectrophotometry, Anal. Chim. Acta, 1998, vol. 364, p. 107.
  12. Sun, D. and Zhang, H., Electrochemical determination of acetaminophen using a glassy carbon electrode coated with a single-wall carbon nanotube-dicetyl phosphate film, Microchim. Acta, 2007, vol. 158, p. 131.
  13. Li, M. and Jing, L., Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode, Electrochim. Acta, 2007, vol. 52, p. 3250.
  14. Felix, F.S., Brett, C.M., and Angnes, L., Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations, J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1622.
  15. Wang, C., Li, C., Wang, F., and Wang, C., Covalent modification of glassy carbon electrode with L-cysteine for the determination of acetaminophen, Microchim. Acta, 2006, vol. 155, p. 365.
  16. Norouzi, P., Dousty, F., Ganjali, M.R., and Daneshgar, P., Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: application in pharmaceutical formulation and biological fluid, Int. J. Electrochem. Sci., 2009, vol. 4, p. 1373.
  17. Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., and Nejati, M., Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode, Bioelectrochemistry, 2009, vol. 75, p. 1.
  18. Gómez-Caballero, A., Goicolea, M.A., and Barrio, R.J., Paracetamol voltammetric microsensors based on electrocopolymerized-molecularly imprinted film modified carbon fiber microelectrodes, Analyst, 2005, vol. 130, p. 1012.
  19. Safavi, A., Maleki, N., and Moradlou, O., A selective and sensitive method for simultaneous determination of traces of paracetamol and p-aminophenol in pharmaceuticals using carbon ionic liquid electrode, Electroanalysis, 2008, vol. 20, p. 2158.
  20. Atta, N.F. and El-Kady, M.F., Poly (3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen, Talanta, 2009, vol. 79, p. 639.
  21. Goyal, R.N., Gupta, V.K., Oyama, M., and Bachheti, N., Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode, Electrochem. Commun., 2005, vol. 7, p. 803.
  22. Lourenção, B.C., Medeiros, R.A., Rocha-Filho, R.C., Mazo, L.H., and Fatibello-Filho, O., Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode, Talanta, 2009, vol. 78, p. 748.
  23. Fernández-Remolar, D.C., Iron oxides, hydroxides and oxy-hydroxides, in Encyclopedia of Astrobiology, Gargaud, M., Eds., Berlin, Heidelberg: Springer, 2015, p. 1268.
  24. Kalambate, P.K., Sanghavi, B.J., Karna, S.P., and Srivastava, A.K., Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode, Sens. Actuators B, 2015, vol. 213, p. 285.
  25. Kang, X., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta, 2010, vol. 81, p. 754.
  26. Goyal, R.N., Gupta, V.K., and Chatterjee, S., Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators B, 2010, vol. 149, p. 252.
  27. Tyszczuk-Rotko, K., Bęczkowska, I., Wójciak-Kosior, M., and Sowa, I., Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films, Talanta, 2014, vol. 129, p. 384.
  28. Bouabi, Y.E., Farahi, A., Achak, M., Zeroual, M., Hnini, K., El Houssame, S., and El Mhammedi, M.A., Electrocatalytic effect of fluoroapatite in reducing paracetamol at carbon paste electrode: analytical application, J. Taiwan. Inst. Chem. Eng., 2016, vol. 66, p. 33.
  29. Stakheev, A.Y., Shpiro, E.S., and Apijok, J., XPS and XAES study of titania-silica mixed oxide system, J. Phys. Chem., 1993, vol. 97, p. 5668.
  30. Chitravathi, S. and Munichandraiah, N., Voltammetric determination of paracetamol, tramadol and caffeine using poly (Nile blue) modified glassy carbon electrode, J. Electroanal. Chem., 2016, vol. 764, p. 93.
  31. Fan, Y., Liu, J.H., Lu, H.T., and Zhang, Q., Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2–graphene modified glassy carbon electrode, Colloids Surf. B, 2011, vol. 85, p. 289.
  32. Vinay, M.M. and Nayaka, Y.A., Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine, J. Sci.: Adv. Mater. Devices, 2019, vol. 4, p. 442.
  33. Thomas, T., Mascarenhas, R.J., Cotta, F., Guha, K.S., Swamy, B.K., Martis, P., and Mekhalif, Z., Poly (Patton and Reeder’s reagent) modified carbon paste electrode for the sensitive detection of acetaminophen in biological fluid and pharmaceutical formulations Colloids Surf. B, 2013, vol. 101, p. 91.
  34. Santos, A.M., Wong, A., Almeida, A.A., and Fatibello-Filho, O., Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles, Talanta, 2017, vol. 174, p. 610.
  35. Madhuri, C., Kiranmai, S., Saritha, D., Rao, V.P., Madhavi, G., and Kusuma, H.S., Electrochemical determination of paracetamol at poly (orange dye) modified carbon paste electrode using cyclic voltammetry, J. Chem. Technol. Metall., 2019, vol. 54, p. 758.
  36. Niedziałkowski, P., Cebula, Z., Malinowska, N., Białobrzeska, W., Sobaszek, M., Ficek, M., and Ossowski, T., Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls, Biosens. Bioelectron., 2019, vol. 126, p. 308.
  37. Amare, M., Voltammetric determination of paracetamol in tablet formulation using Fe(III) doped zeolite-graphite composite modified GCE, Heliyon, 2019, vol. 5, p. e01663.
  38. Arancibia, V., Penagos-Llanos, J., Nagles, E., García-Beltrán, O., and Hurtado, J.J., Development of a microcomposite with single-walled carbon nanotubes and Nd2O3 for determination of paracetamol in pharmaceutical dosage by adsorptive voltammetry, J. Pharm. Anal., 2019, vol. 9, p. 62.