Статья
2020

Layered Solid-Electrolyte Membranes Based on Zirconia: Production Technology


O. Yu. Zadorozhnaya O. Yu. Zadorozhnaya , E. A. Agarkova E. A. Agarkova , O. V. Tiunova O. V. Tiunova , Yu. K. Napochatov Yu. K. Napochatov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520020123
Abstract / Full Text

A solid electrolyte membrane is a key part of a solid oxide fuel cell (SOFC). This paper presents the results of our study of the effects of particle size of the starting powders, composition of organic additives in suspension, and process parameters on the quality of three-layer ceramic sheets of solid electrolyte with dimensions of 100 × 100 mm and a thickness of 0.15 mm, made by casting on a moving tape. The inner layer was 10Sc1YSZ (10 mol % Sc2O3, 1 mol % Y2O3, 89 mol % ZrO2)—a material with the highest oxygen ion conductivity among zirconia-based solid solutions. 6ScSZ was chosen for the outer layers (6 mol % Sc2O3, 94 mol % ZrO2). The three-layer architecture of the solid electrolyte membranes allows the improvement of the mechanical characteristics while maintaining the required functional properties (primarily, anion conductivity). This study is devoted to optimization of the production technology of these layered membranes by tape casting.

Author information
  • NEVZ-CERAMICS, 630049, Novosibirsk, Russia

    O. Yu. Zadorozhnaya & Yu. K. Napochatov

  • Moscow Institute of Physics and Technology (National Research University), 117303, Dolgoprudnyi, Moscow oblast, Russia

    E. A. Agarkova

  • Tomsk Polytechnic University, 634050, Tomsk, Russia

    O. V. Tiunova

References
  1. Tiunova, O.V., Zadorozhnaya, O.Yu., Nepochatov, Yu.K., Burmistrov, I.N., Kuritsyna, I.E., and Bredikhin, S.I., Ceramic membranes based on scandium-stabilized ZrO2 obtained by tape casting technique, Russ. J. Electrochem., 2014, vol. 50, p. 719.
  2. Minh, N.Q., Ceramic fuel cells, J. Am. Ceram. Soc., 1993, vol. 76, p. 563.
  3. Andujar, J.M. and Segura, F., Fuel cells: history and updating. A walk along two centuries, Renewable Sustainable Energy Rev., 2009, vol. 13, p. 2309.
  4. Ormerod, R.M., Solid oxide fuel cells, Chem. Soc. Rev., 2003, vol. 32, p. 17.
  5. Singhal, S.C. and Kendall, K., High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Oxford: Elsevier, 2003, p. 424.
  6. Cheng, J.G., Fu, Q.X., Liu, X.Q., et al., Key Eng. Mater., 2202, vols. 224–226, p. 173.
  7. Fu, C.J., Chan, S.H., Liu, Q.L., et al., Int. J. Hydrogen Energy, 2010, vol. 35, p. 301.
  8. Costa, R., Hafsaoui, J., Almeida De Oliveira, A.P., et al., J. Appl. Electrochem., 2009, vol. 39, p. 485.
  9. Gurauskis, J., Sanchez-Herencia, A.J., and Baudin, C., Joining green ceramic tapes made from water-based slurries by applying low pressures at ambient temperature, J. Eur. Ceram. Soc., 2005, vol. 25, p. 3403.
  10. Timurkutluk, B., The role of lamination conditions on electrochemical and mechanical performance of ceramic electrolytes for solid oxide fuel cells, Ceram. Int., 2015, vol. 41, p. 2057.
  11. Capdevila, X.G., Folch, J., Calleja, A., et al., High-density YSZ tapes fabricated via the multi folding lamination process, Ceram. Int. 2009, vol. 35, p. 1219.
  12. Park, H.-G., Moon, H., Park, S.-C., et al., Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique, J. Power Sources, 2010, vol. 195, p. 2463.
  13. Lee, S.-H., Messing, G.L., and Awano, M., Sintering arches for co-sintering camber-free SOFC multilayers, J. Am. Ceram. Soc., 2008, vol. 91, p. 421.
  14. Agarkov, D.A., Bredikhin, S.I., Burmistrov, I.N., Kuritsyna, I.E., Nepochatov, Yu.K., and Tiunova, O.V., Membrana tverdogo elektrolita dlya tverdookisnykh toplivnykh elementov (Solid Electrolyte Membrane for Solid Oxide Fuel Cells), RF Patent 161024, 2016.
  15. Goulart, C. and de Souza, D., Critical analysis of aqueous tape casting, sintering, and characterization of planar yttria-stabilized zirconia electrolytes for SOFC, Int. J. Appl. Ceram. Technol., 2017, p. 1.