Electric Conductivity of α-Al2O3 Suspensions in Carbonate and Carbonate-Chloride Melts

E. V. Nikolaeva E. V. Nikolaeva , I. D. Zakir’yanova I. D. Zakir’yanova , A. L. Bove A. L. Bove
Российский электрохимический журнал
Abstract / Full Text

The temperature dependence of the specific electric conductivity of suspensions based on carbonate and carbonate-chloride melts immobilized with α-Al2O3 powder was studied. For carbonate-chloride melts immobilized with α-Al2O3, the decrease in the specific electric conductivity considerably exceeded the effect associated with a decrease in the volume fraction of charge carriers. The Raman spectroscopy and Xray diffraction analysis showed that there was no chemical interaction of α-Al2O3 with the carbonate and carbonate-chloride melt that could lead to the formation of additional nonconducting phases in these systems in the temperature range under study.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620000, Russia

    E. V. Nikolaeva, I. D. Zakir’yanova & A. L. Bove

  • Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, 620002, Russia

    E. V. Nikolaeva, I. D. Zakir’yanova & A. L. Bove

  1. Bakin, K.B., Simakova, O.N., Polyakov, P.V., Mikhalev, Yu.G., Simakov, D.A., and Gusev, A.O., Elektroprovodnost’ elektrolitov-suspenzii sistemy NaFAlF 3CaF 2Al 2 O 3 (Electric Cconductivity of Electrolyte Suspensions of the NaF–AlF3–CaF2–Al2O3 System), Zh. SFU. Tekhn. Tekhnol., 2011, vol. 2, p. 162.
  2. Remick, R., and Wheeler, D., Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis, Colorado: National Renewable Energy Laboratory, 2010.
  3. Kulkarni, A. and Giddey, S., Materials issues and recent developments in molten carbonate fuel cells, J. Solid State Electrochem., 2012, vol. 16, p. 3123.
  4. Beleke, A., Mizuhata, M., and Deki, S., Diffuse reflectance FT-IR spectroscopic study of interactions of α-Al2O3/molten NaNO3 coexistence systems, Phys. Chem. Chem. Phys., 2003, vol. 5, p. 2089.
  5. Burmakin, E.I., Rodigina, E.N., and Esina, N.O., Electric resistance of molten carbonate electrolytes immobilized with lithium aluminosilicates, in Elektrokhimiya rasplavlennykh solevykh i tverdykh elektrolitov (Electrochemistry of Molten Salt and Solid Electrolytes), 1974, p. 81.
  6. Scaccia, S., Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives, J. Mol. Liq., 2005, vol. 116, p. 67.
  7. Näfe, H., Conductivity of alkali carbonates, carbonatebased composite electrolytes and IT-SOFC, ECS J. Solid State Sci. Technol., 2014, vol. 3, p. 7.
  8. Mizuhata, M., Ohashi, T., and Béléké, A., Electrical conductivity and related properties of molten carbonates coexisting with ceria-based oxide powder for hybrid electrolyte, Int. J. Hydrogen Energy, 2012, vol. 37, p. 19407.
  9. Mizuhata, M., Harada, Y., Cha, G., Béléké, A., and Deki, S., Physicochemical properties of molten alkali metal carbonates coexisting with inorganic powder, J. Electrochem. Soc., 2004, vol. 151, p. 179.
  10. Dukhin, S.S., Elektroprovodnost’ i elektrokineticheskie svoistva dispersnykh sistem (Electroconductivity and Electrokinetic Properties of Disperse Systems), Kiev: Naukova Dumka, 1975.
  11. Pletcher, D., Instrumental Methods in Electrochemistry, Pletcher, D., Greef, R., and Peat, R., Eds., Westergate: Horwood, 2001, p. 445.
  12. Posypaiko, V.I., Alekseeva, E.A., and Vasina, N.A., Diagrammy plavkosti solevykh sistem. Ch. 3. Dvoinye sistemy s obshchim kationom (Fusion Diagrams of Salt Systems, Part 3. Binary Systems with a Common Cation), Moskow: Metallurgia, 1979.
  13. Janz, G.J., Molten salts data as reference standards for density, surface tension and electrical conductance: KNO3 and NaCl, J. Chem. Eng. Data, 1961, vol. 6, p. 321.
  14. Janz, G.J., and Lorenz, M.R., Thermodynamic and transport properties for molten salt: correlation equations for critically evaluated density, surface tension, electrical conductance and viscosity data, J. Phys. Chem. Ref. Data, 1988, vol. 17, p. 213.
  15. Zakir’yanova, I.D., Arkhipov, P.A., and Zakir’yanov, D.O., Reaction mechanism of lead(II) oxide with a PbCl2–CsCl melt according to Raman spectroscopic data, J. Appl. Spectrosc., 2016, vol. 82, p. 920.
  16. Markov, B.F., Termodinamika kompleksnykh soedinenii v rasplavakh solevykh sistem (Thermodynamics of Complex Compounds in Molten Salt Systems), Kiev: Naukova Dumka, 1988.
  17. Shackelford, J.F., and Doremus, R.H., Ceramic and Glass Materials. Structure, Properties and Processing, New York: Springer, 2008.
  18. Gertsberg, G., Kolebatel’nye i vrashchatel’nye spektry mnogoatomnykh molekul (Vibrational and Rotational Spectra of Polyatomic Molecules), Moscow: Inostrannaya Literatura, 1949.