Examples



mdbootstrap.com



 
Статья
2021

Thermodynamic modeling of SiBCN film deposition from the gas phase in the Si—B—N—C—H system


V. A. ShestakovV. A. Shestakov, M. L. KosinovaM. L. Kosinova
Российский химический вестник
https://doi.org/10.1007/s11172-021-3083-9
Abstract / Full Text

Thermodynamic modeling of the chemical vapor deposition (CVD) of films of complex composition in the Si—B—N—C—H system under reduced pressure (0.01 or 10 Torr) in a wide temperature range of 500–1500 K using various organoelement compounds was carried out. An example with mixtures of tetramethylsilane SiMe4 and hexamethyldisilane (SiMe3)2 with trimethylamine borane Me3N · BH3 or triethylamine borane Et3N · BH3 illustrates a possibility to produce films of various compositions: from boron and silicon nitrides to their mixtures with carbides and/or carbon. According to the CVD diagrams, the prevailing equilibrium condensed phases are various phase complexes containing SiC, Si3N4, BN, and C.

Author information
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3 prosp. Akad. Lavrent’eva, 630090, Novosibirsk, Russian FederationV. A. Shestakov & M. L. Kosinova
References
  1. G. Barroso, Q. Li, R. K. Bordia, G. Motz, J. Mater. Chem. A, 2019, 7, 1936; DOI: https://doi.org/10.1039/c8ta09054h.
  2. Silicon Carbide — Materials, Processing and Applications in Electronic Devices, Ed. M. Mukherjee, InTech, 2011, 546 pp.
  3. A. Viard, D. Fonblanc, D. Lopez-Ferber, M. Schmidt, A. Lale, C. Durif, M. Balestrat, F. Rossignol, M. Weinmann, R. Riedel, S. Bernard, Adv. Eng. Mater., 2018, 20, 1800360; DOI: https://doi.org/10.1002/adem.201800360.
  4. P. Zhang, D. Jia, Z. Yang, X. Duan, Y. Zhou, J. Adv. Ceram., 2012, 1, 157; DOI: https://doi.org/10.1007/s40145-012-0017-x.
  5. A. Jalowiecki, J. Bill, F. Aldinger, J. Mayer, Composites, 1996, 27A, 717; DOI: S1359-835X(96)00004-8.
  6. D. Hegemann, R. Riedel, C. Oehr, Chem. Vap. Deposition, 1999, 5, 61; DOI: 0948-1907/99/0203-0061.
  7. J. Wilden, A. Wank, A. Bykava, Surf. Coat. Technol., 2005, 200, 612; DOI: https://doi.org/10.1016/j.surfcoat.2005.01.027.
  8. H. A. Samra, A. Kumar, J. Xia, T. Staedler, X. Jiang, Surf. Coat. Technol., 2013, 223, 52; DOI: https://doi.org/10.1016/j.surfcoat.2013.02.028.
  9. X. Sunn, H. Liu, J. Li, H. Cheng, Ceram. Int., 2016, 42, 82; DOI: https://doi.org/10.1016/j.ceramint.2015.07.116.
  10. Y. Liu, N. Chai, X. Liu, H. Qin, X. Yin, L. Zhang, L. Cheng, J. Am. Ceram. Soc., 2015, 98, 2703; DOI: https://doi.org/10.1111/jace.13730.
  11. N. Dong, N. Chai, Y. Liu, X. Liu, H. Qin, X. Yin, L. Zhang, L. Cheng, J. Europ. Ceram. Soc., 2016, 36, 3581; DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.05.030.
  12. J. Li, M. Zhao, Y. Liu, N. Chai, F. Ye, H. Qin, L. Cheng, L. Zhang, Materials, 2017, 10, 655; DOI: https://doi.org/10.3390/ma10060655.
  13. C. Wang, Y. Liu, M. Zhao, F. Ye, L. Cheng, Ceram. Int., 2018, 44, 22830; DOI: https://doi.org/10.1016/j.ceramint.2018.09.074.
  14. W. Yue, Y. Liu, M. Zhao, F. Ye, L. Cheng, J. Mater. Sci. Technol., 2019, 35, 2897; https://doi.org/10.1016/j.jmst.2019.07.018.
  15. H. Qin, Y. Liu, F. Ye, Z. Cheng, C. Chen, L. Cheng, L. Zhang, J. Alloys Comp., 2019, 771, 747; DOI: https://doi.org/10.1016/j.jallcom.2018.08.006.
  16. I. S. Merenkov, H. Katsui, M. N. Khomyakov, V. S. Sulyaeva, R. V. Pushkarev, R. Tu, T. Goto, M. L. Kosinova, J. Eur. Ceram. Soc., 2019, 39, 5123; DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.08.006.
  17. N. Dong, N. Chai, Y. Liu, X. Liu, H. Qin, X. Yin, L. Zhang, L. Cheng, J. Eur. Ceram. Soc., 2016, 36, 3581; DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.05.030.
  18. A. N. Golubenko, M. L. Kosinova, F. A. Kuznetsov, J. Phys. IV, 2001, 11, 177; DOI: https://doi.org/10.1051/jp4:2001322.
  19. A. N. Golubenko, M. L. Kosinova, A. A. Titov, F. A. Kuznetsov, Inorg. Mater., 2003, 39, 362; DOI: https://doi.org/10.1023/A:1023275631975.
  20. V. A. Shestakov, V. I. Kosyakov, M. L. Kosinova, Russ. Chem. Bull., 2019, 68, 1983; DOI: https://doi.org/1066-5285/19/6811-1983.
  21. V. I. Kosyakov, V. A. Shestakov, M. L. Kosinova, Russ. J. Inorg. Chem., 2018, 63, 822; DOI: https://doi.org/10.1134/S0036023618060153.
  22. V. A. Shestakov, E. N. Ermakova, S. V. Sysoev, V. I. Kosyakov, M. L. Kosinova, Russ. Chem. Bull., 2018, 67, 980; DOI: https://doi.org/10.1007/s11172-018-2167-7.
  23. V. I. Rakhlin, I. P. Tsyrendorzhieva, S. V. Sysoev, Yu. M. Rumyancev, O. V. Maslova, M. L. Kosinova, Russ. Chem. Bull., 2017, 66, 2283; DOI: https://doi.org/1066_5285/17/6612_2283.
  24. E. N. Ermakova, S. V. Sysoev, L. D. Nikulina, I. P. Tsyrendorzhieva, V. I. Rakhlin, M. L. Kosinova, Thermochimica Acta, 2015, 622, 2; DOI: https://doi.org/10.1016/j.tca.2015.02.004.
  25. F. A. Kuznetsov, V. A. Titov, Proc. Inter. Symp. on Advanced Materials (September 241–30, 1995), Japan, p. 16.