Examples



mdbootstrap.com



 
Статья
2019

Protein-Based Nanobiosensor for Electrochemical Determination of Hydrogen Peroxide


Z. TamlehZ. Tamleh, R. RafipourR. Rafipour, S. KashanianS. Kashanian
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519100094
Abstract / Full Text

We designed a hydrogen peroxide biosensor. The electrochemical detection of H2O2 was performed based on immobilization of cobalt nanoparticles–ferritin (CoNPs–Fer) onto multiwalled carbon nanotubes (MWCNTS) ensnared into chitosan (CS) matrices. Electrochemical techniques such as differential pulse voltammetry (DPV) and cyclic voltammetry (CV) was used to check the property of biosensor. Energy-dispersive X-ray spectroscopy (EDXS) and field emission scanning electron microscopy (FESEM) techniques showed the prosperous immobilization of CoNPs–Fer on the modified GC electrode surface. The hydrogen peroxide-designed biosensor displayed a linear range from 0.2 to 14 nM (R2 = 0.99), a detection limit of 1.29 nM (S/N = 3) and sensitivity of –0.1105 μA/nM.The apparent heterogeneous electron transfer rate constant (Ks) and the charge transfer coefficient (α) were gained 4.19 s–1 and 0.49, respectively. This biosensor can detect hydrogen peroxide with high sensitivity, selectivity, and low detection limit.

Author information
  • Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, IranZ. Tamleh & R. Rafipour
  • Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) and Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, IranS. Kashanian
  • Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, IranS. Kashanian
References
  1. Kelley, E.E., Khoo, N.K., Hundley, N.J., Malik, U.Z., Freeman, B.A., and Tarpey, M.M., Hydrogen peroxide is the major oxidant product of xanthine oxidase, Free Radic. Biol. Med., 2010, vol. 48, no. 4, p. 493.
  2. Lacy, F., Gough, D.A., and Schmid-Schönbein, G.W., Role of xanthine oxidase in hydrogen peroxide production, Free Radic. Biol. Med., 1998, vol. 25, no. 6, p. 720.
  3. BienertJan, G.P., Schjoerring, J.K., and Jahn, T.P., Membrane transport of hydrogen peroxide, Biochim. Biophys. Acta, 2006, vol. 1758, p. 994.
  4. Rafipour, R., Kashanian, S., and Tarighat, F.A., Sensitive electrochemical biosensing of H2O2 based on cobalt nanoparticles synthesised in iron storage protein molecules, IET Nanobiotechnol., 2014, vol. 8, no. 4, p. 196.
  5. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O., Oxidative stress and antioxidant defense, World Allergy Organ J., 2012, vol. 5, p. 9.
  6. Nasir, M., Rauf, S., Muhammad, N., Nawaz, M.H., Chaudhry, A.A., Malik, M.H., Shahid, S.A., and Hayat, A., Biomimetic nitrogen doped titania nanoparticles as a colorimetric platform for hydrogen peroxide detection, J. Colloid Interface Sci., 2017, vol. 505, p. 1147.
  7. Farrokhnia, M., Karimi, S., Momeni, S., and Khalililaghab, S., Colorimetric sensor assay for detection of hydrogen peroxide using green synthesis of silver chloride nanoparticles: experimental and theoretical evidence, Sens. Actuat. B: Chem., 2017, vol. 246, p. 979.
  8. Sherino, B., Mohamad, S., Halim, S.N.A., and Manan, N.S.A., Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode, Sens. Actuat. B: Chem., 2018, vol. 254, p. 1148.
  9. Wu, Y. and Hu, S., Biosensors based on direct electron transfer in redox proteins, Microchim. Acta, 2007, vol. 159, nos. 1–2, p. 1.
  10. Zhang, W. and Li, G., Third-generation biosensors based on the direct electron transfer of proteins, Anal. Sci., 2004, vol. 20, no. 4, p. 603.
  11. Kashanian, S., Rafipour, R., Tarighat, F., and Ravan, H., Immobilisation of cobaltferritin onto gold electrode based on self-assembled monolayers, IET Nanobiotechnol., 2012, vol. 6, no. 3, p. 102.
  12. Kashanian, S., Tarighat, F.A., Rafipour, R., and Abbasi-Tarighat, M., Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co (NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor, Mol. Biol. Rep., 2012, vol. 39, no. 9, p. 8793.
  13. Rafipour, R., Kashanian, S., Hashemi, S., Shahabadi, N., and Omidfar, K., An electrochemical biosensor based on cobalt nanoparticles synthesized in iron storage protein molecules to determine ascorbic acid, Biotechnol. Appl. Biochem., 2016, vol. 63, no. 5, p. 740.
  14. Rafipour, R., Kashanian, S., Hashemi, S., Omidfar, K., and Ezzati Nazhad Dolatabadi, J., Apoferritin-templated biosynthesis of manganese nanoparticles and investigation of direct electron transfer of MnNPs-HsAFr at modified glassy carbon electrode, Biotechnol. Appl. Biochem., 2017, vol. 64, no. 1, p. 110.
  15. Munro, H.N. and Linder, M.C., Ferritin: structure, biosynthesis, and role in iron metabolism, Physiol. Rev., 1978, vol. 58, no. 2, p. 317.
  16. Theil, E.C., Behera, R.K., and Tosha, T., Ferritins for chemistry and for life, Coord. Chem. Rev., 2013, vol. 257, no. 2, p. 579.
  17. Andrews, S.C., Harrison, P.M., Yewdall, S.J., Arosio, P., Levi, S., Bottke, W., von Darl, M., Briat, J.-F., Laulhère, J.-P., and Lobreaux, S., Structure, function, and evolution of ferritins, J. Inorg. Biochem., 1992, vol. 47, no. 1, p. 161.
  18. Uchida, M., Kang, S., Reichhardt, C., Harlen, K., and Douglas, T., The ferritin superfamily: supramolecular templates for materials synthesis, Biochim. Biophys. Acta, 2010, vol. 1800, no. 8, p. 834.
  19. Yoshimura, H., Protein-assisted nanoparticle synthesis, Colloids Surf. A, 2006, vol. 282, p. 464.
  20. Zhu, C., Yang, G., Li, H., Du, D., and Lin, Y., Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem., 2014, vol. 87, no. 1, p. 230.
  21. Xu, Z., Chen, X., and Dong, S., Electrochemical biosensors based on advanced bioimmobilization matrices, Trends. Anal. Chem., 2006, vol. 25, no. 9, p. 899.
  22. Domard, A. and Domard, M., Chitosan: structure-properties relationship and biomedical applications, Polym. Biomater., 2001, vol. 2, p. 187.
  23. Ali, A. and Ahmed, S., A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol., 2018, vol. 109, p. 273.
  24. Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., and Hebard, A.F., Transparent, conductive carbon nanotube films, Science, 2004, vol. 305, no. 5688, p. 1273.
  25. Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone – an anabolic steroid used in doping, Anal. Chim. Acta, 2007, vol. 597, no. 1, p. 82.
  26. Wang, S.-F., Xie, F., and Hu, R.-F., Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen, Sens. Actuat. B: Chem., 2007, vol. 123, no. 1, p. 495.
  27. Park, C.W., Park, H.J., Kim, J.H., Won, K., and Yoon, H.H., Immobilization and charcteriazation of ferritin on gold electrode, Ultramicroscopy, 2009, vol. 109, no. 8, p. 1001.
  28. Salimi, A., Sharifi, E., Noorbakhsh, A., and Soltanian, S., Electrochem. Commun., 2006, vol. 8, no. 9, pp. 1499–1508.
  29. Karim-Nezhad, G., Pashazadeh, S., and Pashazadeh, A., Ni/Al LDH nanoparticles modified carbon paste electrode: application to electro-catalytic oxidation of methanol, Anal. Bioanal. Electrochem., 2012, vol. 4, p. 399.
  30. Li, X., Niu, X., Zhao, W., Chen, W., Yin, C., Men, Y., Li, G., and Sun, W., Black phosphorene and PEDOT: PSS-modified electrode for electrochemistry of hemoglobin, Electrochem. Commun., 2018, vol. 86, p. 68.
  31. Fotouhi, L., Fatollahzadeh, M., and Heravi, M.M., Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube, Int. J. Electrochem. Sci., 2012, vol. 7, p. 3919.
  32. Hong, J., Zhao, Y.-X., Xiao, B.-L., Moosavi-Movahedi, A.A., Ghourchian, H., and Sheibani, N., Direct electrochemistry of hemoglobin immobilized on a functionalized multi-walled carbon nanotubes and gold nanoparticles nanocomplex-modified glassy carbon electrode, Sensors, 2013, vol. 13, no. 7, p. 8595.
  33. Yin, Y., Lü, Y., Wu, P., and Cai, C., Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes, Sensors, 2005, vol. 5, no. 4, p. 220.
  34. Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980.
  35. Ngamchuea, K., Eloul, S., Tschulik, K., and Compton, R.G., Planar diffusion to macro disc electrodes-what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively?, J. Solid. State. Electrochem., 2014, vol. 18, no. 12, p. 3251.
  36. Antink, W.H., Choi, Y., Seong, K.-d., and Piao, Y., Simple synthesis of CuO/Ag nanocomposite electrode using precursor ink for non-enzymatic electrochemical hydrogen peroxide sensing, Sens. Actuat. B: Chem., 2018, vol. 255, p. 1995.
  37. Wu, Y., Wang, F., Lu, K., Lv, M., and Zhao, Y., Self-assembled dipeptide-graphene nanostructures onto an electrode surface for highly sensitive amperometric hydrogen peroxide biosensors, Sens. Actuat. B: Chem., 2017, vol. 244, p. 1022.
  38. Suarez, G., Santschi, C., Martin, O.J., and Slaveykova, V.I., Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquaticells, Biosens. Bioelectron., 2013, vol. 42, p. 385.
  39. Zhang, P., Guo, D., and Li, Q., Maganese oxide ultrathin nanosheets sensors for non-enzymatic detection of H2O2, Mater. Lett., 2014, vol. 125, p. 202.
  40. Karimi, A., Husain, S., Hosseini, M., Azar, P.A., and Ganjali, M., Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free eelctrochemiluminesence sensor based on a polypyrrole-cerium oxide nanocomposite, Sens. Actuat. B: Chem., 2018, vol. 271, p. 90.