Examples



mdbootstrap.com



 
Статья
2022

Use of Equivalent Reactant Feeding in Deposition of Ni–Mn–O Coatings by Molecular Layering


I. S. EzhovI. S. Ezhov, D. V. NazarovD. V. Nazarov, M. Yu. MaksimovM. Yu. Maksimov
Российский журнал прикладной химии
https://doi.org/10.1134/S107042722203003X
Abstract / Full Text

The deposition of Ni–Mn–O thin films by molecular layering with equivalent feeding of organometallic reactants was studied. Bis(cyclopentadienyl)nickel (NiCp2) and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III) [Mn(thd)3] were used as organometallic reactants. Oxygen-containing plasma was used for forming oxygen-containing structures. The mean increment of the Ni–Mn–O coating thickness in one cycle exceeds the sum of the corresponding values known for NiO and Mn2O3. At equivalent feeding, the nickel content of the coating exceeds the manganese content. High Coulomb efficiency (100%) of samples with the Ni–Mn–O coating on a steel support as an electrode is due to high reversibility of the electrochemical processes occurring in the course of charging–discharging trials. With an 80-fold increase in the discharging current, the discharging capacity decreases by less than 30%.

Author information
  • Peter the Great Polytechnic University, 195251, St. Petersburg, RussiaI. S. Ezhov, D. V. Nazarov, P. S. Vishnyakov, A. A. Popovich & M. Yu. Maksimov
  • St. Petersburg State University, 199034, St. Petersburg, RussiaD. V. Nazarov
  • Ioffe Physicotechnical Institute, 194021, St. Petersburg, RussiaYu. M. Koshtyal & A. M. Rumyantsev
  • Indian Institute of Technology Indore, Indore, Simrol, 453552, Khandwa Rd, IndiaRajesh Kumar
References
  1. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vap. Depos., 2015, vol. 21, nos. 10–12, pp. 216–240. https://doi.org/10.1002/cvde.201502013
  2. George, S.M., Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131. https://doi.org/10.1021/cr900056b
  3. Nilsen, O., Miikkulainen, V., Gandrud, K.B., Ostreng, E., Ruud, A., and Fjellvag, H., Phys. Status Solidi A, 2014, vol. 211, no. 2, pp. 357–367. https://doi.org/10.1002/pssa.201330130
  4. Reddy, M.V., Rao, G.V.S., and Chowdari, B.V.R., Chem. Rev., 2013, vol. 113, no. 7, pp. 5364–5457. https://doi.org/10.1021/cr3001884
  5. Koshtyal, Y., Nazarov, D., Ezhov, I., Mitrofanov, I., Kim, A., Rymyantsev, A., Lyutakov, O., Popovich, A., and Maximov, M., Coatings, 2019, vol. 9, no. 301, p. 16. https://doi.org/10.3390/coatings9050301
  6. Ezhov, I., Vishniakov, P., Mitrofanov, I., Koshtyal, Y., Nazarov, D., Rumyantsev, A., Popovich, A., and Maximov, M., in Proc. 12th Int. Conf. on Nanomaterials—Research & Application, 2021, pp. 231–236. https://doi.org/10.37904/nanocon.2020.3715
  7. Wen, Y.W., Cai, J.M., Zhang, J., Yang, J.Q., Shi, L., Cao, K., Chen, R., and Shan, B., Chem. Mater., 2019, vol. 31, no. 1, pp. 101–111. https://doi.org/10.1021/acs.chemmater.8b03168
  8. Zhang, F., Sun, G.S., Zhao, W.S., Wang, L., Zeng, L., Liu, S.B., Liu, B., Dong, L., Liu, X.F., and Yan, G.G., J. Phys. Chem. C, 2013, vol. 117, no. 46, pp. 24579–24585. https://doi.org/10.1021/jp4080652
  9. Ray, A., Roy, A., Saha, S., Ghosh, M., Chowdhury, S.R., Maiyalagan, T., Bhattacharya, S.K., and Das, S., Langmuir, 2019, vol. 35, no. 25, pp. 8257–8267. https://doi.org/10.1021/acs.langmuir.9b00955