The Kolmogorov–Sinai Entropy in the Setting of Fuzzy Sets for Atmospheric Corrosion Image Texture Analysis

Yang Song Yang Song , Bing Zhou Bing Zhou , Yingying Zhang Yingying Zhang , Xinhui Nie Xinhui Nie , Chao Ma Chao Ma , Zhiming Gao Zhiming Gao , Da-Hai Xia Da-Hai Xia
Российский электрохимический журнал
Abstract / Full Text

Image analysis gives us a new opportunity in corrosion science. Fuzzy Kolmogorov–Sinai (K–S) entropy is used to quantify the average amount of uncertainty of a dynamical system through a sequence of observations. The fuzzy K–S entropy for horizontal and vertical orientations is sensitive to distribution of corrosion product or corrosion degree, and the entropy values decrease as the corrosion becomes more and more serious. It is concluded that the fuzzy K–S entropy is illustrated as an effective feature for image analysis and corrosion classification.

Author information
  • Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China

    Yang Song, Chao Ma, Zhiming Gao & Da-Hai Xia

  • CNPC research institute of engineering technology, Tianjin, 300451, China

    Bing Zhou & Yingying Zhang

  • Guodian Science and Technology Research Institute, China Guodian, Nanjing, 210023, China

    Xinhui Nie

  1. Schindelholz, E., Risteen, B.E., and Kelly, R.G., Effect of relative humidity on corrosion of steel under sea salt aerosol proxies: I. NaCl, J. Electrochem. Soc., 2014, vol. 161, pp. C450–C459.
  2. Schindelholz, E., Risteen, B.E., and Kelly, R.G., Effect of relative humidity on corrosion of steel under sea salt aerosol proxies: II. MgCl2, artificial seawater, J. Electrochem. Soc., 2014, vol. 161, pp. C460–C470.
  3. Esmaily, M., Shahabi-Navid, M., Svensson, J.E., Halvarsson, M., Nyborg, L., Cao, Y., and Johansson, L.G., Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50, Corros. Sci., 2015, vol. 90, pp. 420–433.
  4. Leygraf, C., Wallinder, I.O., Tidblad, J., and Graedel, T., Atmospheric Corrosion, 2nd ed., 2016.
  5. Thee, C., Hao, L., Dong, J., Mu, X., Wei, X., Li, X., and Ke, W., Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet–dry condition, Corros. Sci., 2014, vol. 78, pp. 130–137.
  6. Xia, D.H., Song, S.Z., and Behnamian, Y., Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms, Corros. Eng., Sci. Technol., 2016, vol. 51, pp. 527–544.
  7. Shi, Y., Tada, E., and Nishikata, A., A method for determining the corrosion rate of a metal under a thin electrolyte film, J. Electrochem. Soc., 2015, vol. 162, pp. C135–C139.
  8. Zhiming, G., Zeqing, W., Yinghao, S., Sibo, W., Chao, M., Yu, Z., and Xia, D.-H., Passivity degradation of nuclear materials in reduced sulfur environments: A review, Trans. Tianjin Univ., 2016, vol. 22, pp. 189–201.
  9. Tan, H., Jiang, Y., Deng, B., Gao, W., and Li, J., Evaluation of aged Incoloy 800 alloy sensitization to intergranular corrosion by means of double loop electrochemical methods and image analysis, Nucl. Eng. Design, 2011, vol. 241, pp. 1421–1429.
  10. Pidaparti, R.M., Aghazadeh, B.S., Whitfield, A., Rao, A.S., and Mercier, G.P., Classification of corrosion defects in NiAl bronze through image analysis, Corros. Sci., 2010, vol. 52, pp. 3661–3666.
  11. Quin, M.J., Bailey, M.G., Ikeda, B.M., and Shoesmith, D.W., Image-analysis techniques for investigating localized corrosion processes, Report Atomic Energy of Canada Limited (AECL), 1993, pp. 1–51.
  12. Codaro, E.N., Nakazato, R.Z., Horovistiz, A.L., Ribeiro, L.M.F., Ribeiro, R.B., and Hein, L.R.O., An image processing method for morphology characterization and pitting corrosion evaluation, Mater. Sci. Eng., A, 2002, vol. 334, pp. 298–306.
  13. Garcia Ochoa, E. and Corvo, F., Copper patina corrosion evaluation by means of fractal geometry using electrochemical noise (EN) and image analysis, Electrochem. Commun., 2010, vol. 12, pp. 826–830.
  14. Itzhak, D., Dinstein, I., and Zilberberg, T., Pitting corrosion evaluation by computer image processing, Corros. Sci., 1981, vol. 21, pp. 17–22.
  15. Pham, T.D., The Kolmogorov–Sinai entropy in the setting of fuzzy sets for image texture analysis and classification, Pattern Recognit., 2016, vol. 53, pp. 229–237.
  16. Shi, J., Xia, D., Wang, J., Zhou, C., and Liu, Y., Degradation process of coated tinplate by phase space reconstruction theory, Trans. Tianjin Univ., 2013, vol. 19, pp. 92–97.
  17. Xia, D.H., Song, S.Z., Wang, J.H., Shi, J.B., Bi, H.C., and Gao, Z.M., Determination of corrosion types from electrochemical noise by phase space reconstruction theory, Electrochem. Commun., 2012, vol. 15, pp. 88–92.
  18. Xia, D.H., Shi, J.B., Gong, W.Q., Zhou, R.J., Gao, Z.M., and Wang, J.H., The significance of correlation dimension obtained from electrochemical noise, Electrochemistry, 2012, vol. 80, pp. 907–912.
  19. Pham, T.D., Classification of complex biological aging images using fuzzy Kolmogorov–Sinai entropy, J. Phys. D: Appl. Phys., 2014, vol. 47, p. 485402.
  20. Atmanspacher, H. and Scheingraber, H., A fundamental link between system theory and statistical mechanics, Found. Phys., 1987, vol. 17, pp. 939–963.
  21. Pham, T.D., Geostatistical entropy for texture analysis: An indicator kriging approach, Int. J. Intell. Syst., 2014, vol. 29, pp. 253–265.
  22. de la Fuente, D., Diaz, I., Simancas, J., Chico, B., and Morcillo, M., Long-term atmospheric corrosion of mild steel, Corros. Sci., 2011, vol. 53, pp. 604–617.