Examples



mdbootstrap.com



 
Статья
2019

Acid Decomposition of p-tert-Butylcumene Hydroperoxide to p-tert-Butylphenol and Acetone


E. M. YarkinaE. M. Yarkina, E. A. KurganovaE. A. Kurganova, A. S. FrolovA. S. Frolov, G. N. Koshel’G. N. Koshel’, E. M. DenisovaE. M. Denisova
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219110090
Abstract / Full Text

p-tert-Butyphenol is a valuable product of basic organic synthesis, widely used in various branches of industry. The relationships of acid decomposition of p-tert-butylcumene hydroperoxide to p-tert-butylphenol and acetone as one of the key steps of the alternative method for p-tert-butylphenol synthesis were studied. The influence exerted by temperature, catalyst concentration, and initial concentration of p-tert-butylcumene hydroperoxide on its acid decomposition was examined. Conditions ensuring preparation of p-tert-butylphenol in 92% yield were found. A kinetic model of the acid decomposition of p-tert-butylcumene hydroperoxide in the presence of concentrated sulfuric acid was constructed; it adequately describes the experimental data and allows substantiation of the reaction mechanism.

Author information
  • Yaroslavl State Technical University, Yaroslavl, 150023, RussiaE. M. Yarkina, E. A. Kurganova, A. S. Frolov, G. N. Koshel’ & E. M. Denisova
References
  1. Saha, M., Hossain, M.K., Ashaduzzama, M., Afroza, S.T., Galib, M., and Sharif, N., Bangladesh J. Sci. Ind. Res., 2009, vol. 44, no. 1, pp. 131–136. https://doi.org/10.3329/bjsir.v44i1.2722
  2. Atwood, J.L., Barbour, L.J., Thallapally, P.K., and Wirsig, T.B., Chem. Commun., 2005, pp. 51–53. https://doi.org/10.1039/B416752J
  3. Voronin, I.O., Nesterova, T.N., Zhuravskii, E.A., and Strelchik, B.S., Kinet. Catal., 2014, vol. 55, no. 6, pp. 705–711. https://doi.org/10.1134/S0023158414060147
  4. Zakoshanskii, V.M., Fenol i atseton: Analiz tekhnologii, kinetiki i mekhanizma osnovnykh reaktsii (Phenol and Acetone: Analysis of the Technology, Kinetics, and Mechanism of the Main Reactions), St. Petersburg: Khimizdat, 2009, pp. 149–189.
  5. Kurganova, E.A., Koshel', G.N., and Dakhnavi, E.M., Petrol. Chem., 2017, vol. 57, no. 3, pp. 262–266. https://doi.org/10.1134/S0965544117020189
  6. Koshel', G.N., Glazyrina, I.I., Bychkov, B.N., and Farberov, N.I., Zh. Prikl. Khim., 1978, vol. 51, no. 10, pp. 2325–2329.
  7. Glazyrina, I.I., Shapiro, Yu.E., Koshel', G.N., and Shutova, I.V., Zh. Org. Khim., 1979, vol. 49, no. 2, pp. 444–448.
  8. Vodnár, J., React. Kinet. Catal. Lett., 1979, vol. 10, no. 3, pp. 237–241. https://doi.org/10.1007/BF02068990
  9. Vodnár, J., Fejes, P., Varga, K., and Berger, F., Appl. Catal. A: General, 1995, vol. 122, pp. 33–40. https://doi.org/10.1016/0926-860X(94)00212-6