Examples



mdbootstrap.com



 
Статья
2017

The relationship between activity and stability of deposited platinum-carbon electrocatalysts


V. E. GutermanV. E. Guterman, S. V. BelenovS. V. Belenov, A. A. AlekseenkoA. A. Alekseenko, N. Yu. TabachkovaN. Yu. Tabachkova, V. A. VolochaevV. A. Volochaev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517050081
Abstract / Full Text

The operation-mode stability and the catalytic activity in electrode reactions are the most important properties of electrocatalysts that determine the possibility of using them in fuel cells. The negative linear correlations between stability and catalytic activity of a series of Pt/C and Pt–Cu/C materials in the oxygen electroreduction reaction are revealed and studied. A method of selecting electrocatalysts with the optimal combination of activity and stability is proposed. The Cu@Pt/C catalysts containing bimetallic nanoparticles with the core–shell architecture which demonstrate the anomalously high combination of activity and stability are synthesized.

Author information
  • Faculty of Chemistry, Southern Federal University, Rostov-on-Don, 344090, RussiaV. E. Guterman, S. V. Belenov, A. A. Alekseenko & V. A. Volochaev
  • National Research Technological University: Moscow Institute of Steel and Alloys, Moscow, 119049, RussiaN. Yu. Tabachkova
References
  1. Katsounaros, I., Cherevko, S., Zeradjanin, A.R., and Mayrhofer, K.J.J., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, p. 102.
  2. Bockris, J.O'M., in Electrocatalysis: Computational, Experimental and Industrial Aspects, Zinola, C.F, Ed., Boca Raton: CRC, 2010.
  3. Thompsett, D., in Handbook of Fuel Cells. Fundamentals, Technology and Applications, New York: John Wiley, 2003, vol. 3.
  4. Petrii, O.A., Russ. Chem. Rev., 2015, vol. 84, p. 159.
  5. Bockris, J.O'M., Reddy, A.K.N., and Gamboa-Aldeco, M.E., Modern Electrochemistry: Fundamentals of Electrodics, New York: Kluver/Plenum, 2000, vol. 2a, ch. 7.
  6. Meier, J.C., Galeano, C., Katsounaros, I., Witte, J., Bongard, H.J., Topalov, A.A., Baldizzone, C., Mezzavilla, S., Schüth, F., and Mayrhofer, K.J.J., Beilstein J. Nanotechnol, 2014, vol. 5, p. 44.
  7. Holby, E.F., Sheng, W., Shao-Horn, Y., and Morgan, D., Energy Environ. Sci., 2009, vol. 2, p. 865.
  8. Rinaldo, S.G., Stumper, J.R., and Eikerling, M., J. Phys. Chem. C, 2010, vol. 114, p. 5773.
  9. Blurton, K.F., Greenburg, P., Oswin, G.H., and Rutt, D.R., J. Electrochem. Soc., 1972, vol. 119, p. 559.
  10. Bregoli, L.J., Electrochim. Acta, 1978, vol. 23, p. 489.
  11. Kinoshita, K., Electrochemical Oxygen Technology, New York: Wiley, 1992.
  12. Min, M., Cho, J., Cho, K., and Kim, H., Electrochim. Acta, 2000, vol. 45, p. 4211.
  13. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Appl. Catalysis B, 2005, vol. 56, p. 9.
  14. Leontyev, I.N., Belenov, S.V., Guterman, V.E., Haghi-Ashtiani, P., Shaganov, A.P., and Dkhil, B., J. Phys. Chem. C, 2011, vol. 115, p. 5429.
  15. Li, D., Wang, C., Strmcnik, D.S., Tripkovic, D.V., Sun, X., Kang, Y., Chi, M., Snyder, J.D., Van Der Vliet, D., Tsai, Y., Stamenkovic, V.R., Sun, S., and Markovic, N.M., Energy Environ. Sci., 2014, vol. 7, p. 4061.
  16. Zhang, Sh., Yuan, X., Hin, J.N.Ch., Wang, H., Friedrich, K.A., and Schulze, M., J. Power Sources, 2009, vol. 194, p. 588.
  17. Cherevko, S., Kulyk, N., and Mayrhofer, K.J.J. Nano Energy, 2016 (in press).
  18. Ohma, A., Shinohara, K., Iiyama, A., Yoshida, T., and Daimaru, A., ECS Trans., 2011, vol. 41, p. 775.
  19. Zhang, Y., Chen, S., Wang, Y., Ding, W., Wu, R., Li, L., Qi, X., and Wei, Z., J. Power Sources, 2015, vol. 273, p. 62.
  20. Wu, J., Yuan, X.Z., Martin, J.J., Wang, H., Zhang, J., Shen, J., Wu, Sh., and Merida, W., J. Power Sources, 2008, vol. 184, p. 104.
  21. Avakov, V.B., Bogdanovskaya, V.A., Kapustin, A.V., Korchagin, O.V., Kuzov, A.V., Landgraf, I.K., Stankevich, M.M., and Tarasevich, M.R., Russ. J. Electrochem., 2015, vol. 51, p. 570.
  22. Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Inorg. Mater., 2015, vol. 51, p. 1258.
  23. Guterman, V.E., Alekseenko, A.A., Volochaev, V.A., and Tabachkova, N.Yu., Inorg. Mater., 2016, vol. 52, p. 23.
  24. Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Int. J. Hydrogen Energy, 2016, vol. 41 P, p. 1609.
  25. Guterman, V., Belenov, S., and Tabachkova, N., Abstract of papers, 5th European PTFC and H 2 Forum, June 2015, Luzern, Switzerland, Chapter 4, A09, p. 42.
  26. Lastovina, T.A., Guterman, V.E., and Manokhin, S.S., Al’tern. Energ. Ekol., 2011, no. 9, p. 111.
  27. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Yu., Nanotechnol. Russ., 2016, vol. 11, no. 5-6, p. 287
  28. Guterman, V.E., Belenov, S.V., Lastovina, T.A., Fokina, E.P., Prutsakova, N.V., and Konstantinova, Ya.B., Russ. J. Electrochem., 2011, vol. 47, p. 933.
  29. Kanda, F.K., Noda, Z., Nagamatsu, Y., Higashi, T., Taniguchi, S., Lyth, S.M., Hayashi, A., and Sasaki, K., ECS Electrochem. Lett., 2014, vol. 3 P, p. F15.
  30. Hashimasa, Y., Shimizu, T., Matsuda, Y., Imamura, D., and Akai, M., ECS Trans., 2013, vol. 50, p. 723.
  31. Guterman, V.E., Lastovina, T.A., Belenov, S.V., Tabachkova, N.Yu., Vlasenko, V.G., Khodos, I.I., and Balakshina, E.N., J. Solid State Electrochem., 2014, vol. 18, p. 1307.
  32. Guterman, V.E., Pakharev, A.Y., and Tabachkova, N.Y., Appl. Catal., A, 2013, vol. 453, p. 113.
  33. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2006.
  34. Khudhayer, W.J., Kariuki, N.N., Wang, X., Myers, D.J., Shaikh, A.U., and Karabacak, T., J. Electrochem. Soc., 2011, vol. 158, p. 1029.
  35. Zhu, H., Li, X., and Wang, F., Int. J. Hydrogen Energy, 2011, vol. 36, p. 9151.
  36. Oezaslan, M. and Strasser, P., J. Power Sources, 2011, vol. 196, p. 5240.
  37. Marcua, G., Totha, R., Srivastava, P., and Strasser, P., J. Power Sources, 2012, vol. 208, p. 288.