Examples



mdbootstrap.com



 
Статья
2021

Surface Tension of Fe–Mn–C Melts


N. I. SinitsinN. I. Sinitsin, O. A. ChikovaO. A. Chikova, V. V. V’yukhinV. V. V’yukhin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421120207
Abstract / Full Text

The results of surface tension measurements for melts of the Fe–Mn–C system with 5.0–25.0 wt % Mn and 0.4–2.2 wt % C were given. Anomalies in the temperature dependences of the surface tension coefficient of Fe–Mn–C melts were found, which are interpreted as evidence for the irreversible destruction of microheterogeneity. The microheterogeneity destruction temperature was determined.

Author information
  • Ural Federal University, 620002, Yekaterinburg, RussiaN. I. Sinitsin, O. A. Chikova & V. V. V’yukhin
  • Ural State Pedagogical University, 620017, Yekaterinburg, RussiaO. A. Chikova
References
  1. O. Grässel and G. Frommeyer, Mater. Sci. Technol. 14, 1213 (1998). https://doi.org/10.1179/mst.1998.14.12.1213
  2. B. X. Huang, X. D. Wang, Y. H. Rong, et al., Mater. Sci. Eng. A 438–440, 306 (2006). https://doi.org/10.1016/j.msea.2006.02.150
  3. P. S. Popel’, Rasplavy, No. 1, 22 (2005).
  4. M. Calvo-Dahlborg, P. S. Popel, M. J. Kramer, et al., J. Alloys Compd. 550, 9 (2013).
  5. O. A. Chikova, N. I. Sinitsin, and V. V. V’yukhin, Russ. J. Phys. Chem. A 95, 244 (2021). https://doi.org/10.1134/S0036024421020084
  6. N. I. Sinitsin, O. A. Chikova, and V. V. V’yukhin, Inorg. Mater. 57, 86 (2021). https://doi.org/10.1134/S002016852101012X
  7. O. A. Chikova, N. I. Sinitsin, and V. V. V’yukhin, Russ. J. Phys. Chem. A 93, 1435 (2019). https://doi.org/10.1134/S0036024419080065
  8. Y. He, J.-Sh. Li, J. Wang, et al., Trans. Nonferr. Met. Soc. China 30, 2293 (2020). https://doi.org/10.1016/S1003-6326(20)65380-8
  9. R. Kurita and H. Tanaka, Appl. Phys. Sci. 116, 24949 (2019).
  10. Z. H. Gu, H. Y. Wang, N. Zheng, et al., J. Mater. Sci. 43, 980 (2008). https://doi.org/10.1007/s10853-007-2275-5
  11. J. Piątkowski, Solid State Phenom. 176, 29 (2011). https://doi.org/10.4028/www.scientific.net/SSP.176.29
  12. R. J. Mostert and G. T. van Rooyen, Metall. Mater. Trans. A. 15, 2185 (1984). https://doi.org/10.1007/BF02647101
  13. C. Wang, J. Zhang, L. Liu, et al., J. Mater. Sci. Technol. 27, 668 (2011). https://doi.org/10.1016/S1005-0302(11)60123-0
  14. J. Lee and M. Shin, Metall. Mater. Trans. B 42, 546 (2011). https://doi.org/10.1007/s11663-011-9490-9
  15. L. T. Hoai and J. Lee, J. Mater. Sci. 47, 8303 (2012). https://doi.org/10.1007/s11663-011-9555-9
  16. T. Dubberstein, H.-P. Heller, J. Klostermann, et al., J. Mater. Sci. 50, 7227 (2015). https://doi.org/10.1007/s10853-015-9277-5
  17. S. I. Popel’, B. V. Tsarevskii, and N. K. Dzhemilev, Fiz. Met. Metalloved. 18, 468 (1964).
  18. Van Tszin-Tan, R. A. Karasev, and A. M. Samarin, Izv. Akad. Nauk SSSR, Ond. Tekh. Nauk., No. 2, 49 (1960).
  19. A. A. Ofitserov, Izv. Akad. Nauk SSSR, Met. 4, 64 (1971).
  20. M. Nakamoto and T. Tanaka, ISIJ Int. 60, 2141 (2020). https://doi.org/10.2355/isijinternational.ISIJINT-2019-796
  21. J. Wang, M. Bian, and L. Ma, Acta Metall. Sin. 22, a270 (1986).
  22. B. J. Keene, Int. Mater. Rev. 33, 1 (1988). https://doi.org/10.1179/imr.1988.33.1.1
  23. B. V. Tsarevskii and S. I. Popel’, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 12, 12 (1960).
  24. N. I. Sinitsin, O. A. Chikova, and V. V. V’yukhin, Steel Transl. 50, 16 (2020). https://doi.org/10.3103/S0967091220010118
  25. Yu. V. Naidich and V. N. Eremenko, Fiz. Met. Metalloved. 6, 883 (1961).
  26. V. M. Glazov, M. Vobst, and V. M. Timoshenko, Methods for Studying the Properties of Liquid Metals and Semiconductors (Metallurgiya, Moscow, 1989) [in Russian].
  27. V. N. Eremenko, M. I. Ivanov, G. M. Lukashenko, et al., Physical Chemistry of Inorganic Materials, Vol. 2: Surface Tension and Thermodynamics of Metal Melts (Naukova Dumka, Kiev, 1988) [in Russian].
  28. S. I. Popel, Surface Phenomena in Melts (Cambridge Int. Sci., Cambridge, 2003; Metallurgiya, Moscow, 1994).
  29. S. A. Verzhbolovich, V. V. Singer, I. Z. Radovskii, et al., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 2, 66 (1985).
  30. C. Serre, P. Wynblatt, and D. Chatain, Surf. Sci. 415, 336 (1998). https://doi.org/10.1016/S0039-6028(98)00567-6
  31. C. Serre, D. Chatain, M. Muris, et al., Metall. Mater. Trans. A 32, 2851 (2001). https://doi.org/10.1007/s11661-001-1035-4
  32. G. Kaptay, CALPHAD 29, 56 (2005). https://doi.org/10.1016/j.calphad.2005.04.004
  33. J. W. Cahn, J. Chem. Phys. 66, 3667 (1977). https://doi.org/10.1063/1.434402
  34. B. D. Summ, Vestn. Mosk. Univ. 40, 400 (1999).
  35. G. A. Kaptay, Adv. Colloid Interface Sci. 283, 102212 (2020). https://doi.org/10.1016/j.cis.2020.102212
  36. M. S. Santos and J. C. R. Reis, J. Alloys Compd. 864, 158839 (2021). https://doi.org/10.1016/j.jallcom.2021.158839
  37. K. Shmakova, O. Chikova, and V. Tsepelev, Phys. Chem. Liq. 56, 1 (2018). https://doi.org/10.1080/00319104.2016.1233184
  38. B. J. Keene, Int. Mater. Rev. 38, 157 (1993). https://doi.org/10.1179/imr.1993.38.4.157
  39. Iu. Korobeinikov, R. Endo, S. Seetharaman, et al., Metall. Mater. Trans. B. 52, 571 (2021). https://doi.org/10.1007/s11663-020-02044-y
  40. B. J. Keene, Int. Mater. Rev. 33, 1 (1988). https://doi.org/10.1179/imr.1988.33.1.1
  41. V. I. Nizhenko and L. I. Floka, Surface Tension of Metals and Alloys (One- and Two-Component Systems) (Metallurgiya, Moscow, 1981) [in Russian].
  42. J. Lee, W. Shimoda, and T. Tanaka, Mater. Trans. 45, 2864 (2004). https://doi.org/10.2320/matertrans.45.2864
  43. M. S. Santos and R. J. C. Reis, Mater. Today Commun. 24, 100932 (2020). https://doi.org/10.1016/j.mtcomm.2020.100932