CaV0.5Mo0.5xxTixO3 – δ as a Promising Anode Material for Solid-Oxide Fuel Cells with LSGM Electrolyte

S. A. BelyakovS. A. Belyakov, S. N. ShkerinS. N. Shkerin, A. V. Kuz’minA. V. Kuz’min
Российский электрохимический журнал
Abstract / Full Text

CaV0.5Mo0.5 – xTixO3 – δ samples with the perovskite structure were studied as a promising anode material for fuel cells with electrolyte based on substituted lanthanum gallate La0.88Sr0.12Ga0.82Mg0.18O2.85 (LSGM). According to X-ray diffraction data, the solid-solution homogeneity region lies from х = 0 to х = 0.25. It is shown that CaV0.5Mo0.25Ti0.25O3 – δ is compatible with the LSGM-based electrolytes as regards both its chemistry and the coefficient of thermal expansion. Substitution of titanium leads to a decrease in the total conductivity but extends the p(O2) range of phase stability of this material. It is demonstrated that in its composite with LSGM this material becomes more resistant to oxidation.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 142432, RussiaS. A. Belyakov, S. N. Shkerin & A. V. Kuz’min
  • Ural Federal University named after the First President of Russia B.N. Yeltzyn, Yekaterinburg, 119992, RussiaA. V. Kuz’min
  1. Singhal, S.C. and Kendall, K., High Temperature Solid Oxide Fuel Cells, Fundamentals, Design and Applications, New York: Elsevier Science, 2004.
  2. Ishihara, T., Matsuda, H., and Takita, Y., Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc., 1994, vol. 116, p. 3801.
  3. Feng, M. and Goodenough, J.B., A superior oxide-ion electrolyte, Eur. J. Solid State Inorg. Chem., 1994, vol. 31, p. 663.
  4. Ishihara, T., Kilner, J.A., Honda, M., Sakai, N., Yokokawa, H., and Takita, Y., Oxygen surface exchange and diffusion in LaGaO3 based perovskite type oxides, Solid State Ionics, 1998, vol. 113-115, p. 593.
  5. Krasil'nikov, V.N., Gyrdasova, O.I., Shkerin, S.N., Korneva, A.A., Nikonov, A.V., and Lipilin, A.S., Preparation of a single-phase solid electrolyte La1–xSrxGa1–yMgyO3 - (x + y)/2 by self-propagating high-temperature synthesis, Russ. J. Inorg. Chem, 2011, vol. 56, no. 7, p. 999.
  6. Korneva, A.A., Krasil’nikov, V.N., Shkerin, S.N., Gyrdasova, O.I., Lipilin, A.S., Nikonov, A.V., and Rempel’, A.A., RF Patent 2387052, 2010.
  7. Hayashi, S., Aoki, R., and Nakamura, T., Metallic conductivity in perovskite-type compounds AMoO3 (A = Ba, Sr, Ca) down to 2.5 K, Mater. Res. Bull., 1979, vol. 14, p. 409.
  8. Im, H.N., Jeon, S.Y., Choi, M.B., Kim, S.H., and Song, S.J., Chemical stability and electrochemical properties of CaMoO3–δ for SOFC anode, Ceram. Int., 2012, vol. 38, p. 153.
  9. Maekawa, T., Kurosaki, K., Muta, H., Uno, M., and Yamanaka, S., Thermal and electrical properties of perovskite- type strontium molybdate, J. Alloys Compd., 2005, vol. 390, p. 314.
  10. Nagai, I., Shirakawa, N., Ikeda, S., Iwasaki, R., Nishimura, H., and Kosaka, M., Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure, Appl. Phys. Lett., 2005, vol. 87, p. 1.
  11. Wang, H.H., Cui, D.F., Zhou, Y.L., and Qian, H.J., Growth and characterization of SrMoO3 thin films, J. Cryst. Growth, 2001, vol. 226, nos. 2–3, p. 261.
  12. Kamata, K., Nakamura, T., and Sata, T., Synthesis and properties of the metallic molybdate(IV) CaMoO3, Chem. Lett., 1975, vol. 1, p. 81.
  13. Kamata, K., Nakamura, T., and Sata, T., Valence stability of molybdenum in alkaline earth molybdates, Mater. Res. Bull., 1975, vol. 10, no. 5, p. 373.
  14. Martínez-Coronado, R., Alonso, J.A., Aguadero, A., and Fernándes-Dias, M.T., Optimized energy conversion efficiency in solid-oxide fuel cells implementing SrMo1–xFexO3–δ perovskites as anodes, J. Power Sources, 2012, vol. 208, p. 153.
  15. Sprague, J.J. and Tuller, H.L., Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate, J. Eur. Ceram. Soc., 1999, vol. 19, p. 803.
  16. Huang, Y.H., Dass, R.I., Xing, Z.L., and Goodennough, J.B., Double perovskites as anode materials for solid-oxide fuel cells, Science, 2006, vol. 312, p. 254.
  17. Liu, Q., Dong, X., Xiao, G., Zhao, F., and Chen, F., A novel electrode material for symmetrical SOFC, Adv. Mater., 2010, vol. 22, no. 48, p. 5478.
  18. Graves, C.R., Reddy Sudireddy, B., and Mogensen, M., Molybdate based ceramic negative-electrode materials for solid oxide cells, ECS Trans, 2010, vol. 28, no. 11, p. 173.
  19. He, B., Wang, Z., Zhao, L., Pan, X., Wu, X., and Xia, C., Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells, J. Power Sources, 2013, vol. 241, p. 627.
  20. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter, 2002, vol. 14, no. 11, p. 2717.
  21. Gagulin, V.V., Korchagina, S.K., Ivanova, V.V., and Shevchuk, Y.A., Synthesis and properties of Sr2CoMoO6 and Sr2NiMoO6, Inorg. Mater., 2003, vol. 39, no. 6, p. 625.
  22. Xie, Z.X., Zhao, H.L., Du, Z.H., Chen, T., Chen, N., Liu, X., and Skinner, S.J., Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6–δ as an anode material for solid oxide fuel cells, J. Phys. Chem. C, 2012, vol. 116, no. 17, p. 9734.
  23. Karen, P., Moodenbaugh, A.R., Goldberger, J., Santhosh, P.N., and Woodward, P.M., Electronic, magnetic and structural properties of A2VMoO6 perovskites (A = Ca, Sr), J. Solid State Chem., 2006, vol. 179, p. 2120.
  24. Aguadero, A., de la Calle, C., Alonso, J.A., Pérez-Coll, D., Escudero, M.J., and Daza, L., Structure, thermal stability and electrical properties of Ca(V0.5Mo0.5)O3 as solid oxide fuel cell anode, J. Power Sources, 2009, vol. 192, p. 78.
  25. Belyakov, S.A., Shkerin, S.N., and Selezneva, N.V., Synthesis of an anode material based on mixed calcium vanadatomolybdate and its stability in contact with solid electrolytes, Russ. J. Appl. Chem., 2015, vol. 88, no. 4, p. 706.
  26. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A: Found. Adv., 1976, vol. 32, no. 5, p. 751.
  27. Brixner, L.H., X-ray study and electrical properties of the systems Ca(V0.5Mo0.5)O3, J. Inorg. Nucl. Chem., 1960, vol. 15, nos. 3–4, p. 356.
  28. Alarcón, C.E., Landínez Téllez, D.A., and Roa-Rojas, J., Structural and magnetoelectric studies on new Sr2TiMoO6 material, Rev. Mex. Fis., 2012, vol. 58, no. 2, p. 85.