Examples



mdbootstrap.com



 
Статья
2017

Neutron diffraction analysis of structural transformations in lithium-ion batteries


I. A. BobrikovI. A. Bobrikov, N. Yu. SamoylovaN. Yu. Samoylova, D. A. BalagurovD. A. Balagurov, O. Yu. IvanshinaO. Yu. Ivanshina, O. A. DrozhzhinO. A. Drozhzhin, A. M. BalagurovA. M. Balagurov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517020033
Abstract / Full Text

The possibilities of using neutron diffraction in real-time studies of structural transformations occurring in crystalline functional materials during the action of external factors are discussed. As an example, the diffraction patterns are directly collected with 5-min resolution in the course of three charge–discharge cycles of a commercial lithium-ion battery (operando mode). It is shown that the analysis of spectrum evolution allows the main processes occurring in electrode materials to be characterized, namely, to identify the structural transformations, assess the fraction of material involved in the process, follow the kinetics and the degree of symmetry of charge–discharge processes, compare the structural transformations with the charge–discharge characteristic of the battery. The high-resolution neutron diffraction in combination with X-ray diffraction and X-ray spectral elemental analysis makes it possible to elucidate the structural type and composition of the working electrode and determine its microsctructural characteristics. Neutron diffraction is shown to be a powerful method often sufficient for studying structural transformations in complex multi-component objects.

Author information
  • Joint Institute for Nuclear Research, Dubna, Moscow region, 141980, RussiaI. A. Bobrikov, N. Yu. Samoylova, D. A. Balagurov, O. Yu. Ivanshina & A. M. Balagurov
  • Moscow State University, Department of Chemistry, Leninskie Gory, Moscow, 119991, RussiaI. A. Bobrikov & O. A. Drozhzhin
  • Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119991, RussiaO. Yu. Ivanshina
References
  1. Balagurov, A.M., Bobrikov, I.A., Samoylova, N.Yu., Drozhzhin, O.A., and Antipov, E.V., Russ. Chem. Rev., 2014, vol. 83, pp. 1120.
  2. Bobrikov, I.A., Balagurov, A.M., Hu, C.-W., Lee, C.-H., Chen, T.-Y., Sangaa, Deleg, and Balagurov, D.A., J. Power Sources, 2014, vol. 258, p. 356.
  3. Aksenov, V.L. and Balagurov, A.M., Usp. Fiz. Nauk, 1996, vol. 166, p. 955.
  4. Balagurov, A.M., Neutron News, 2005, vol. 16, pp. 8–12.
  5. Balagurov, A.M., Bobrikov, I.A., Bokuchava, G.D., Zhuravlev, V.V., and Simkin, V.G., Fiz. Elem. Chastits At. Yadra, 2015, no. 46, p. 453.
  6. Zlokazov, V.B., Balagurov, D.A., Bobrikov, I.A., Samoylova, N.Yu., and Balagurov, A.M., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2017, vol. 11, p. 5.
  7. Rodriguez-Carvajal, J., Phys. B., 1993, vol. 192, p. 55: https://www.ill.eu/sites/fullprof.
  8. Trucano, P. and Chen, R., Nature, 1975, vol. 258, pp. 136.
  9. Ohzuku, T., Iwakoshi, Y., and Sawai, K., J. Electrochem. Soc., 1993, vol. 140, p. 2490.
  10. Sharma, N., Peterson, V.K., Elcombe, M.M., Avdeev, M., Studer, A.J., Blagojevic, N., Yusoff, R., and Kamarulzaman, N., J. Power Sources, 2010, vol. 195, p. 8258.
  11. Senyshyn, A., Dolotko, O., Mühlbauer, M.J., Nikolowski, K., Fuess, H., and Ehrenberg, H., J. Electrochem. Soc., 2013, vol. 160, p. A3198.
  12. Shin, H.C., Chung, K.Y., Min, W.S., Byun, D.J., Jang, H., and Cho, B.W., Electrochem. Commun., 2008, vol. 10, p. 536.
  13. Drozhzhin, O.A., Sumanov, V.D., Karakulina, O.M., Abakumov, A.M., Hadermann, J., Baranov, A.N., Stevenson, K.J., and Antipov, E.V., Electrochim. Acta, 2016, vol. 191, p. 149.
  14. Yamada, H., Suzuki1, T.S., Uchikoshi, T., Hozumi, M., Sait, T., Toshiya Sait, and Sakka, Y., APL Mater., 2013, vol. 1, p. 042110.
  15. Shu, J., Ma, R., Shao, L., Shui, M., Wu, K., Lao, M., Wang, D., Long, N., and Ren, Y., J. Power Sources, 2014, vol. 245, p. 7.
  16. Noh, M. and Cho, J., J. Electrochem. Soc., 2013, vol. 160, p. A105.
  17. Xu, M., Chen, Z., Zhu, H., Yan, X., Li, L.J., and Zhao, Q., J. Mater. Chem. A, 2015, p. 1039. V. 3. P. 13933.
  18. Warren, B.E. and Averbach, B.L., J. Appl. Phys., 1950, vol. 21, p. 595.
  19. Scardi, P. and Leoni, M., Acta Cryst., 2001, vol. A57, p. 604.