A Highly Sensitive Determination for the Melamine in Milk on MIL-101/AuNPs/CTS-PVP-rGO/GCE Electrochemical Sensor

 Ruichi Zhao Ruichi Zhao , Shuhong Sun Shuhong Sun , Wenwen Hao Wenwen Hao , Huimei Guo Huimei Guo , Yining Gao Yining Gao , Lei Shi Lei Shi
Российский электрохимический журнал
Abstract / Full Text

A highly sensitive melamine electrochemical sensor was successfully constructed by self-assembling based on the composite of chitosan with polyvinyl pyrrolidone-dispersed reduced graphene oxide (CTS-PVP-rGO), gold nanoparticles (AuNPs) and metal-organic framework MIL-101. The characterizations of modified materials and electrodes were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron dispersive X-ray (EDX) spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The results indicated that the sensor of MIL-101/AuNPs/CTS-PVP-rGO/GCE exhibited a high sensitivity and selectivity as well as a good stability and reproducibility for the determination of melamine since CTS-PVP-rGO or AuNPs could enhance the conductivity of the sensor greatly and MIL-101 could promote the adsorption of melamine on the surface of the modified electrode remarkably. At pH 7.0, the scan rate of 100 mV/s and the frequency of 50 Hz, the determination limit of melamine was as low as 5.00 × 10–11 mol/L with the linear range from 5.00 × 10–11 to 1.00 × 10–8 mol/L and the correlation coefficient (R) of 0.996. Based on the electrochemical behavior of melamine on MIL-101/AuNPs/CTS-PVP-rGO/GCE, the possible redox procedure of melamine was put forward. Furthermore, the sensor of MIL-101/AuNPs/CTS-PVP-rGO/GCE was applied to the determination of melamine in milk products and a satisfying result was obtained.

Author information
  • College of Chemistry and Chemical Engineering, Liaoning Normal University, 116029, Dalian, China

    Ruichi Zhao, Shuhong Sun, Wenwen Hao, Huimei Guo, Yining Gao & Lei Shi

  1. Zhu, L., Gamez, G., Chen, H., Chingin, K., and Zenobi, R., Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS), Chem. Commun., 2009, vol. 0, pp. 559–561. https://doi.org/10.1039/B818541G
  2. Puschner, B., Poppenga, R.H., Lowenstine, L.J., Filigenzi, M.S., and Pesavento, P.A., Assessment of melamine and cyanuric acid toxicity in cats, J. Vet. Diagn. Invest., 2007, vol. 19, pp. 616–624. https://doi.org/10.1177/104063870701900602
  3. Dai, H.C., Shi, Y., Wang, Y.L., Sun, Y.J., Hu, J.T., Ni, P.Q., and Li, Z., A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer, Sens. Actuat. B Chem., 2014, vol. 202, pp. 201–208. https://doi.org/10.1016/j.snb.2014.05.058
  4. Jia, J.Y., Shen, X.W., Wang, L.Y., Zhang, T.J., Xu, M.S., Fang, X.L., Xu, G.F., Qian, C., Wu, Y. Qian, C., Wu, Y.M., and Geng, H.Q., Extracorporeal shock wave lithotripsy is effective in treating single melamine induced urolithiasis in infants and young children, J. Urol., 2013, vol. 189, pp. 1498–1502. https://doi.org/10.1016/j.juro.2012.11.109
  5. Guo, Z., Xu, X.F., Li, J., Liu, Y.W., Zhang, J., and Yang, C., Ordered mesoporous carbon as electrode modification material for selective and sensitive electrochemical sensing of melamine, Sens. Actuat. B Chem., 2014, vol. 200, pp. 101–108. https://doi.org/10.1016/j.snb.2014.04.031
  6. Yokley, R.A., Maye, L.C., Rezaaiyan, R., Manuli, M.E., and Cheung, M.W., Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD, J. Agric. Food Chem., 2000, vol. 48, pp. 3352–3358. https://doi.org/10.1021/jf991231w
  7. Yu, H., Tao, Y.F., Chen, D.M., Wang, Y.L., Liu, Z.Y., Pan, Y.H., Huang, L.L., Peng, D.P., Dai, M.H., Liu, Z.L., and Yuan, Z.H., Development of a high performance liquid chromatography method and a liquid chromatography-tandem mass spectrometry method with pressurized liquid extraction for simultaneous quantification and confirmation of cyromazine, melamine and its metabolites in foods of animal origin, Anal. Chim. Acta, 2010, vol. 682, pp. 48–58. https://doi.org/10.1016/j.aca.2010.09.032
  8. Zhang, S.J., Yu, Z.Q., Hu, N., Sun, Y.P., Suo, Y.R., and You, J.M., Sensitive determination of melamine leached from tableware by reversed phase high-performance liquid chromatography using 10-methyl-acridone-2-sulfonyl chloride as a pre-column fluorescent labeling reagent, Food Control, 2014, vol. 39, pp. 25–29. https://doi.org/10.1016/j.foodcont.2013.10.037
  9. Cao, B.Y., Yang, H., Song, J., Chang, H.F., Li, S.Q., and Deng, A.P., Sensitivity and specificity enhanced enzyme-linked immunosorbent assay by rational hapten modification and heterogeneous antibody/coating antigen combinations for the detection of melamine in milk, milk powder and feed samples, Talanta, 2013, vol. 116, pp. 173–180. https://doi.org/10.1016/j.talanta.2013.05.009
  10. Zhang, X.F., Zou, M.Q., Qi, X.H., Liu, F., Zhu, X.H., and Zhao, B.H., Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy, J. Raman Spectrosc., 2010, vol. 41, pp. 1655–1660. https://doi.org/10.1002/jrs.2629
  11. Zhou, L.M., Huang, J.S., Yang, L., Li, L.B., and You, T.Y., Enhanced electrochemiluminescence based on \({\text{Ru}}\left( {{\text{bpy}}} \right)_{{\text{3}}}^{{{\text{2}} + }}\)-doped silica nanoparticles and graphene composite for analysis of melamine in milk, Anal Chim Acta, 2014, vol. 824, pp. 57–63. https://doi.org/10.1016/j.aca.2014.03.035
  12. Cao, Q., Zhao, H., Zeng, L.X., Wang, J., Wang, R., Qiu, X.H., and He, Y.J., Electrochemical determination of melamine using oligonucleotides modified gold electrodes, Talanta, 2009, vol. 80, pp. 484–488. https://doi.org/10.1016/j.talanta.2009.07.006
  13. Li, Y.Z., Chao, H.F., Du, H.J., Liu, W.B., Li, Y.W., and Ye, J.S., Electrochemical behavior of metal-organic framework MIL-101 modified carbon paste electrode: an excellent candidate for electroanalysis, J. Electroanal. Chem., 2013, vol. 709, pp. 65–69. https://doi.org/10.1016/j.jelechem.2013.09.017
  14. Tığ, G.A., Günendi, G., and Pekyardımcı, Ş., A selective sensor based on Au nanoparticles-graphene oxidepoly (2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid, J. Appl. Electrochem., 2017, vol. 47, pp. 607–618. https://doi.org/10.1007/s10800-017-1060-7
  15. Hatami, Z. and Jalali, F., Voltammetric determination of immunosuppressive agent, azathioprine, by using a graphene–chitosan modified glassy carbon electrode, Russ. J. Electrochem., 2015, vol. 51, pp. 70–76. https://doi.org/10.1134/S1023193515010097
  16. Yang, K.Z., Zhou, L.Q., Xiong, X., Ye, M.L., Li, L., and Xia, Q.H., RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane, Micropor. Mesopor. Mater., 2016, vol. 225, pp. 1–8. https://doi.org/10.1016/j.micromeso.2015.12.018
  17. Kayal, S., Sun, B., and Chakraborty, A., Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks), Energy, 2015, vol. 91, pp. 772–781. https://doi.org/10.1016/j.energy.2015.08.096
  18. Zhang, W.Q., Zhang, Z.Y., Li, Y.C., Chen, J., Li, X.B., Zhang, Y.D., and Zhang, Y.P., Novel nanostructured MIL-101(Cr)/XC-72 modified electrode sensor: a highly sensitive and selective determination of chloramphenicol, Sensor. Actuat. B Chem., 2017, vol. 247, pp. 756–764. https://doi.org/10.1016/j.snb.2017.03.104
  19. Cheplakova, A.M., Solovieva, A.O., Pozmogova, T.N., Vorotnikov, Y.A., Brylev, K.A., Vorotnikova, N.A., Vorontsova, E.V., Mironov, Y.V., Poveshchenko, A.F., Kovalenko, K.A., and Shestopalov, M.A., Nanosized mesoporous metal-organic framework MIL-101 as a nanocarrier for photoactive hexamolybdenum cluster compounds, J. Inorg. Biochem., 2017, vol. 166, pp. 100–107. https://doi.org/10.1016/j.jinorgbio.2016.11.014
  20. He, X.Y., Gang, M.Y., Li, Z., He, G.W., Yin, Y.H., Cao, L., Zhang, B., Wu, H., and Jiang, Z.Y, Highly conductive and robust composite anion exchange membranes by incorporating quaternized MIL–101(Cr), Sci. Bull., 2017, vol. 62, pp. 266–276. https://doi.org/10.1016/j.scib.2017.01.022
  21. Li, G.H., Li, F.C., Yang, H., Cheng, F.Y., Xu, N., Shi, W., and Cheng, P., Graphene oxides doped MIL–101(Cr) as anode materials for enhanced electrochemistry performance of lithium ion battery, Inorg. Chem. Commun., 2016, vol. 64, pp. 63–66. https://doi.org/10.1016/j.inoche.2015.12.017
  22. Idrisa, A.O., Mafaa, J.P., Mabubab, N., and Arotiba, O.A., Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water, Russ. J. Electrochem., 2017, vol. 53, pp. 170–177. https://doi.org/10.1134/S1023193517020082
  23. Wang, Y., Sun, Y.M., Liao, H.B., Sun, S.N., Li, S.Z., Ager, J.W., III, and Xu, Z.C.J., Activation effect of electrochemical cycling on gold nanoparticles towards the hydrogen evolution reaction in sulfuric acid, Electrochim. Acta, 2016, vol. 209, pp. 440–447. https://doi.org/10.1016/j.electacta.2016.05.095
  24. Liu, Q., Zhu, X., Huo, Z.H., He, X.L., Liang, Y., and Xu, M.T., Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes, Talanta, 2012, vol. 97, pp. 557–562. https://doi.org/10.1016/j.talanta.2012.05.013
  25. Devnani, H., Satsangee, S.P., and Jain, R., A novel graphene-chitosan-Bi2O3 nanocomposite modified sensor for sensitive and selective electrochemical determination of a monoamine neurotransmitter epinephrine, Ionics, 2016, vol. 22, pp. 943–956. https://doi.org/10.1007/s11581-015-1620-y
  26. Yavuz, A.G., Uygun, A., and Bhethanabotla, V.R., Substituted polyaniline/chitosan composites: synthesis and characterization carbohydrate polymers, Carbohyd. Polym., 2009, vol. 75, pp. 448–453. https://doi.org/10.1016/j.carbpol.2008.08.005
  27. Ma, Y.W., Liu, Z.R., Wang, B.L., Zhu, L., Yang, J.P., and Li, X.A., Preparation of graphene-supported Pt–Co nanoparticles and their use in oxygen reduction reactions, New Carbon Mater., 2012, vol. 27, pp. 250–257. https://doi.org/10.1016/S1872-5805(12)60016-X
  28. Christopher, D.Z., Preparation and evaluation of graphite oxide reduced at 220°C, Chem. Mater., 2010, vol. 22, pp. 5625–5629. https://doi.org/10.1021/cm102005m
  29. Yang, F., Wang, P.L., Wang, R.G., Zhou, Y., Su, X.O., He, Y.J., Shi, L., and Yao, D.S., Label free electrochemical aptasensor for ultrasensitive detection of ractopamine, Biosens Bioelectron., 2016, vol. 77, pp. 347–352. https://doi.org/10.1016/j.bios.2015.09.050
  30. Nasirpouri, F., Pourmahmoudi, H., Abbasi, F., Littlejohn, S., Chauhan, A.S., and Nogaret, A., Modification of chemically exfoliated graphene to produce efficient piezoresistive polystyrene-graphene composites, J. Electron. Mater., 2015, vol. 44, pp. 3512–3522. https://doi.org/10.1007/s11664-015-3799-0
  31. Ebadi, A., Rafati, A.A., Bavafa, S., and Mohammadi, M., Kinetic and theoretical studies of novel biodegradable thermo-sensitive xerogels based on PEG/PVP/silica for sustained release of enrofloxacin, Appl. Surf. Sci., 2017, vol. 425, pp. 282–290. https://doi.org/10.1016/j.apsusc.2017.07.046
  32. Ma, F.M., Li, P., Zhang, B.Q., and Wang, Z.V., The facile synthesis of a chitosan Cu(II) complex by solution plasma process and evaluation of their antioxidant activities, Int. J. Biol. Macromol., 2017, vol. 103, pp. 501–507. https://doi.org/10.1016/j.ijbiomac.2017.04.082
  33. Uddin, Md.E., Layek, R.K., Kim, N.H., Hui, D., and Lee, J.H., Preparation and properties of reduced graphene oxide/polyacrylonitrile nanocomposites using polyvinyl phenol, Compos. Part. B, 2015, vol. 80, pp. 238–245. https://doi.org/10.1016/j.compositesb.2015.06.009
  34. Zhang, W.J., Li, Y.J., Zhang, X.X., and Li, C.L., Facile synthesis of highly active reduced graphene oxide-CuI catalyst through a simple combustion method for photocatalytic reduction of CO2 to methanol, J. Solid State Chem., 2017, vol. 253, pp. 47–51. https://doi.org/10.1016/j.jssc.2017.05.022
  35. Yang, J.F., Zhao, Q., Li, J.P., and Dong, J.X., Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior, Micropor. Mesopor. Mater., 2010, vol. 130, pp. 174–179. https://doi.org/10.1016/j.micromeso.2009.11.001
  36. Fazaeli, R., Aliyan, H., Moghadam, M., and Masoudinia, M., Nano-rod catalysts: building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships, J. Mol. Catal. A Chem., 2013, vol. 374–375, pp. 46–52. https://doi.org/10.1016/j.molcata.2013.03.020
  37. Dong, S.Y., Zhang, P.H., Liu, H., Li, N., and Huang, T.L., Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies, Biosens. Bioelectron., 2011, vol. 26, pp. 4082–4087. https://doi.org/10.1016/j.bios.2011.03.039
  38. Laviron, E., Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, J. Electroanal. Chem., 1974, vol. 52, pp. 355–393. https://doi.org/10.1016/S0022-0728(74)80448-1
  39. Xu, Q., Wei, H.P., Du, S., Li, H.B., Ji, Z.P., and Hu, X.Y., Detection of subnanomolar melamine based on electrochemical accumulation coupled with enzyme colorimetric assay, J. Agr. Food Chem., 2013, vol. 61, pp. 1810–1817. https://doi.org/10.1021/jf304034e
  40. Li, J.H., Kuang, D.Z., Feng, Y.L., Zhang, F.X., Xu, Z.F., and Liu, M.Q., A novel electrochemical method for sensitive detection of melamine in infant formula and milk using ascorbic acid as recognition element, B Kor. Chem. Soc., 2012, vol. 33, pp. 2499–2507. https://doi.org/10.5012/bkcs.2012.33.8.2499
  41. Cao, Q., Zhao, H., He, Y.J., Ding, N., and Wang, J., Electrochemical sensing of melamine with 3,4-dihydroxyphenylacetic acid as recognition element, Anal. Chim. Acta, 2010, vol. 675, pp. 24–28. https://doi.org/10.1016/j.aca.2010.07.002
  42. Liao, C.W., Chen, Y.R, Chang, J.L., and Zen, J.M., Single-run electrochemical determination of melamine in dairy products and pet foods, J. Agr. Food Chem., 2011, vol. 59, pp. 9782–9787. https://doi.org/10.1021/jf201989f
  43. Liu, Y.T., Deng, J., Xiao, X.L., Ding, L., Yuan, Y.L., Li, H., Li, X.T., Yan, X.N., and Wang, L.L., Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk, Electrochim. Acta, 2011, vol. 56, pp. 4595–4602. https://doi.org/10.1016/j.electacta.2011.02.088
  44. Rao, H.B., Chen, M., Ge, H.W., Lu, Z.W., Liu, X., Zou, P., Wang, X.X., He, H., Zeng, X.Y., and Wang, Y.Y., A novel electrochemical sensor based on Au@PANI composites film modified glassy carbon electrode binding molecular imprinting technique for the determination of melamine, Biosens. Bioelectron., 2017, vol. 87, pp. 1029–1035. https://doi.org/10.1016/j.bios.2016.09.074
  45. Guo, Z., Zhao, Y.T., Li, Y.H., Bao, T., Sun, T.S., Li, D.D., Luo, X.K., and Fan, H.T., A Electrochemical sensor for melamine detection based on copper-melamine complex using OMC modified glassy carbon electrode, Food Anal. Methods, 2018, vol. 11, pp. 546–555. https://doi.org/10.1007/s12161-017-1025-9
  46. Araujo, W.R. and Paixão, T.R.L.C., Use of copper electrode for melamine quantification in milk, Electrochim. Acta, 2014, vol. 117, pp. 379–384. https://doi.org/10.1016/j.electacta.2013.11.160
  47. Zhu, H., Zhang, S.H., Li, M.X., Shao, Y.H., and Zhu, Z.W., Electrochemical sensor for melamine based on its copper complex, Chem. Commun., 2010, vol. 46, pp. 2259–2261. https://doi.org/10.1039/B924355K