A Novel Electrochemical Sensor for Epinephrine in the Presence of Acetylcholine Based on Modified Screen-Printed Electrode

 Sayed Zia Mohammadi Sayed Zia Mohammadi , Farideh Mosazadeh Farideh Mosazadeh , Hadis Beitollah Hadis Beitollah , Zohreh Barani Zohreh Barani
Российский электрохимический журнал
Abstract / Full Text

In the present study, magnetic core shell manganese ferrite nanoparticles-screen printed electrode (MCSNP/SPE) was fabricated and applied for the determination of the epinephrine (EP) in the presence of acetylcholine (ACh). The electrochemical behavior of epinephrine (EP) was studied by cyclic voltammetry, square wave voltammetry and chronoamperometry. The MCSNP/SPE had electrocatalytic activity toward the EP oxidation higher than bare SPE. It has been found that under an optimum condition, the oxidation of EP at the surface of MCSNP/SPE occurs at a potential about 70 mV less positive than that of an unmodified SPE. Based on the results, the linear oxidation peak current was 0.3–300 μmol L−1 and the correlation coefficient was obtained to be 0.999. According to the three times standard deviation (3Sb) of the blank, the detection limit was calculated 0.08 μmol L−1. Our results showed an increase in selectivity, stability and reproducibility for the MCSNP/SPE, which significantly could measure EP and ACh in EP ampoule, urine and serum samples. It can be concluded that the MCSNP/SPE has promising capacity in developing the electrochemical sensors.

Author information
  • Department of Chemistry, Payame Noor University, Tehran, Iran

    Sayed Zia Mohammadi, Hadis Beitollah & Zohreh Barani

  • School of Public Health, Bam University of Medical Sciences, Bam, Iran

    Farideh Mosazadeh

  1. Wierzbicka, E. and Sulka, G.D., Fabrication of highly ordered nanoporous thin Au films and theirapplication for electrochemical determination of epinephrine, Sens. Actuators B, 2016, vol. 222, p. 270.
  2. Kemp, S.F., Lockey, R.F., and Simons, F.E.R., Epinephrine: the drug of choice foranaphylaxis. A statement of the World Allergy Organization, Allergy, 2008, vol. 63, p. 1061.
  3. Li, J., Wang, X., Duan, H., Wang, Y., and Luo, C., Ultra-sensitive determination of epinephrine based on TiO2–Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites, Mater. Sci. Eng. C, 2016, vol. 64, p. 391.
  4. Bergquist, J., Sciubis, A., Kaczor, A., and Silberring, J., Catecholamines and methods for their identification and quantitation in biological tissues and fluids, J. Neurosci. Methods, 2002, vol. 113, p. 1.
  5. Albishri, H.M. and El-Hady, D.A., Hyphenation of enzyme/graphene oxide-ionic liquid/glassy carbon biosensors with anodic differential pulse stripping voltammetry for reliable determination of choline and acetylcholine in human serum, Talanta, 2019, vol. 200, p. 107.
  6. Chauhan, N., Chawl, S., Pundir, C.S., and Jain, U., An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode, Biosens. Bioelectron., 2017, vol. 89, p. 377.
  7. Rizzo, S., Riviere, C., Piazzi, L., Bisi, A., Gobbi, S., Bartolini, M., Andrisano, V., Morroni, F., Tarozzi, A., Monti, J.P., and Rampa, A., Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, β-Amyloid aggregation, and Aβ-Neurotoxicity, J. Med. Chem., 2008, vol. 51, p. 2883.
  8. Bolat, E.O., Tığ, G.A., and Pekyardımc, S., Fabrication of an amperometric acetylcholine esterase-choline oxidase biosensor based on MWCNTs–Fe3O4NPs–CS nanocomposite for determination of acetylcholine, J. Electroanal. Chem., 2017, vol. 785, p. 241.
  9. Beitollahi, H., Dourandish, Z., Tajik, S., Ganjali, M.R., Norouzi, P., and Faridbod, F., Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine, J. Rare Earths, 2018, vol. 36, p. 750.
  10. Mishra, A.K., Mishra, A., and Chattopadhyay, P., A reversed-phase high performance liquid chromatographic method for determination of Epinephrine in pharmaceutical formulation, Arch. Appl. Sci. Res., 2010, vol. 2, p. 251.
  11. Baba, A., Mannen, T., Ohdaira, Y., Shinbo, K., Kato, K., Kaneko, F., Fukuda, N., and Ushijima, H., Detection of adrenaline on poly(3-aminobenzylamine) ultrathin film by electrochemical-surface plasmon resonance spectroscopy, Langmuir, 2010, vol. 26, p. 18476.
  12. Guo, Y.M., Yang, J.H., Wu, X., and Du, A.Q., A sensitive fluorimetric method for the determination of epinephrine, J. Fluoresc., 2005, vol. 15, p. 131.
  13. Wei, S.L., Song, G.Q., and Lin, J.M., Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum, J. Chromatogr. A, 2005, vol. 1098, p. 166.
  14. Zhu, K.Y., Fu, Q., Leung, K.W., Wong, Z.C., Choi, R.C., and Tsim, K.W., The establishment of a sensitive method in determining different neurotransmitters simultaneously in rat brains by using liquid chromatography-electrospray tandem mass spectrometry, J. Chromatogr. B, 2011, vol. 879, p. 737.
  15. Qiu, H.M., Luo, C.N., Sun, M., Lu, F.G., Fan, L.L., and Li, X.J., A chemiluminescence sensor for determination of epinephrine using graphene oxide-magnetite-molecularly imprinted polymers, Carbon, 2012, vol. 50, p. 4052.
  16. Xu, G.R., Qi, X.H., Yang, F., Lee, J.J., Xu, M.L., Zhang, Y.P., and Kim, S., Double modification of electrode surface for the selective detection of epinephrine and its application to flow injection amperometric analysis, Electroanalysis, 2009, vol. 21, p. 2486.
  17. Beitollahi, H., Taher, M.A., and Hosseini, A., Fabrication of a nanostructure-based electrochemical sensor for simultaneous determination of epinephrine and tryptophan, Measurement, 2014, vol. 51, p. 156.
  18. Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.
  19. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirjalili, B.B.F., and Mirkhalaf, F., Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1,3-dithiane self-assembled monolayer, J. Electroanal. Chem., 2011, vol. 651, p. 243.
  20. Shahrokhian, S. and Saberi, R.S., Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination, Electrochim. Acta, 2011, vol. 57, p. 132.
  21. Beitollahi, H., Dourandish, Z., Tajik, S., Ganjali, M.R., Norouzi, P., and Faridbod, F., Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine, J. Rare Earths, 2018, vol. 36, p. 750.
  22. Mohammadi, S.Z., Sarhadi, A.H., and Mosazadeh, F., Screen-printed electrode modified with magnetic core-shell nanoparticles for detection of chlorpromazine, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 363.
  23. Mohammadi, S.Z., Beitollahi, H., and Bani Asadi, E., Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode, Environ. Monit. Assess., 2015, vol. 187, p. 122.
  24. Mohammadi, S.Z., Beitollahi, H., and Fadaeian, H., Voltammetric determination of isoproterenol using a graphene oxide nano sheets paste electrode, J. Anal. Chem., 2018, vol. 73, p. 705.
  25. Kumary Vidyadharan, A., Jayan, D., and Mary Nancy, T.E., Ni0.1Co0.9Fe2O4-based electrochemical sensor for the detection of paracetamol, J. Solid State Electrochem., 2014, vol. 18, p. 2513.
  26. Mohammadi, S.Z., Beitollahi, H., and Afzali, H., A novel electrochemical nanosensor for voltammetric determination of isoproterenol, Anal. Bioanal. Electrochem., 2016, vol. 8, p. 977.
  27. Shahnavaz, Z., Lorestani, F., Meng, W.P., and Alias, Y., Core–shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose, J. Solid State Electrochem., 2015, vol. 19, p. 1223.
  28. Mohammadi, S.Z., Beitollahi, H., Jasemi, M., and Akbari, A., Nanomolar determination of methyldopa in the presence of large amounts of hydrochlorothiazide using a carbon paste electrode modified with graphene oxide nanosheets and 3-(4′-amino-3′-hydroxy-biphenyl-4-yl)acrylic acid, Electroanalysis, 2015, vol. 27, p. 2421.
  29. Jaime-González, J., Mazario, E., Menendez, N., Sanchez-Marcos, J., Muñoz-Bonilla, A., and Herrasti, P., Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide, J. Solid State Electrochem., 2016, vol. 20, p. 1191.
  30. Mohammadi, S.Z., Beitollahi, H., Allahabadi, H., and Rohani, T., Disposable electrochemical sensor based on modified screen-printed electrode for sensitive cabergoline quantification, J. Electroanal. Chem., 2019, vol. 847, p. 113223.
  31. Mohammadi, S.Z., Beitollahi, H., Dehghan, Z., and Hosseinzadeh, R., Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core–shell magnetic nanoparticles in aqueous media, Appl. Organometal. Chem., 2018, vol. 32, p. 4551.
  32. Mohammadi, S.Z., Beitollahi, H., and Mousavi, M., Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets, Russ. J. Electrochem., 2017, vol. 53, p. 374.
  33. Beitollahi, H., Mohammadi, S.Z., Koroukinejhad, M., and Hosseinzadeh, R., Voltammetric determination of isoproterenol using a nanostructure based electrochemical sensor, Anal. Bioanal. Electrochem., 2015, vol. 7, p. 777.
  34. Arduini, F., Zanardi, C., Cinti, S., Terzi, F., Moscone, D., Palleschi, G., and Seeber, R., Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite, Sens. Actuators B, 2015, vol. 212, p. 536.
  35. Foster, C.W., Metters, J.P., Kampouris, D.K., and Banks, C.E., Ultraflexible screen-printed graphitic electroanalytical sensing platforms, Electroanalysis, 2014, vol. 26, p. 262.
  36. Chan, K.F., Lim, H.N., Shams, N., Jayabal, S., Pandikumar, A., and Huang, N.M., Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen, Mater. Sci. Eng. C, 2016, vol. 58, p. 666.
  37. Beitollahi, H., Mohammadi, S.Z., and Tajik, S., Electrochemical behavior of morphine at the surface of magnetic core shell manganese Ferrite nanoparticles modified screen printed electrode and its determination in real samples, Int. J. Nano Dimens., 2019, vol. 10, p. 304.
  38. Kang, I., Shin, W.S., Manivannan, S., Seo, Y., and Kim, K., An electrochemical sensor for hydrazine based on in situ grown cobalt hexacyanoferrate nanostructured film, J. Electrochem. Sci. Technol., 2016, vol. 7, p. 277.
  39. Beitollahi, H., Nekooei, S., and Torkzadeh Mahani, M., Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode, Talanta, 2018, vol. 188, p. 701.
  40. Norouzi, B., Malekan, A., and Moradian, M., Nickel-zeolite modified carbon paste electrode as electrochemical sensor for hydrogen peroxide, Russ. J. Electrochem., 2016, vol. 52, p. 330.
  41. Mohammadi, S.Z., Beitollahi, H., Khodaparast, B., and Hosseinzadeh, R., Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core-shell magnetic nanoparticles, Res. Chem. Intermed., 2019, vol. 45, p. 1117.
  42. Chatterjee, K., Sarkar, S., Rao, K.J., and Paria, S., Core/shell nanoparticles in biomedical applications, Adv. Colloid Interface Sci., 2014, vol. 209, p. 8.
  43. Patra, S., Roy, E., Madhuri, R., and Sharma, P.K., An imprinted Ag@CdS core shell nanoparticle based optical-electrochemical dual probe for trace level recognition of ferritin, Biosens. Bioelectron., 2015, vol. 63, p. 301.
  44. Mohammadi, S.Z. and Seyedi, A., Preconcentration of cadmium and copper ions on magnetic core-shell nanoparticles for determination by flame atomic absorption, Toxicol. Environ. Chem., 2016, vol. 98, p. 705.
  45. Yuan, Z.Y., Liu, S.Q., Chen, T.H., Wang, J.Z., and Li, H.X., Synthesis of iron-containing MCM-41, J. Chem. Soc. Chem. Commun., 1995, vol. 9, p. 973.
  46. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.
  47. Tavana, T., Khalilzadeh, M.A., Karimi-Maleh, H., Ensafi, A.A., Beitollahi, H., and Zareyee, D., Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode, J. Mol. Liq., 2012, vol. 168, p. 69.
  48. Mazloum-Ardakani, M., Beitollahi, H., Sheikh Mohseni, M.A., Benvidi, A., Naeimi, H., Nejati-Barzoki, M., and Taghavinia, N., Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2′-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles, Colloids Surf. B, 2010, vol. 76, p. 82.