Examples



mdbootstrap.com



 
Статья
2022

Heat Capacity and Thermodynamic Properties of Germanates CaR2Ge3O10 (R = Pr, Nd) in the Region of 320–1000 K


L. T. DenisovaL. T. Denisova, M. S. MolokeevM. S. Molokeev, N. A. GaliakhmetovaN. A. Galiakhmetova, V. M. DenisovV. M. Denisov, N. V. BelousovaN. V. Belousova
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422050077
Abstract / Full Text

Sequential annealing of stoichiometric mixtures of CaCO3, Pr6O11(Nd2O3), and GeO2 in air at 1423–1473 K yields germanates CaPr2Ge3O10 and CaNd2Ge3O10. Their crystal structure is refined via X-ray diffraction. The high-temperature heat capacity (320–1000 K) is measured by means of differential scanning calorimetry. The thermodynamic properties of germanates are calculated using experimental dependences Cp = f(T).

Author information
  • Siberian Federal University, 660041, Krasnoyarsk, RussiaL. T. Denisova, M. S. Molokeev, N. A. Galiakhmetova, V. M. Denisov & N. V. Belousova
  • Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, RussiaM. S. Molokeev
References
  1. H. Yamane, R. Nanimura, T. Yamad, and M. Shimada, J. Solid State Chem. 179, 289 (2006). https://doi.org/10.1016/j.jssc.2005.10.023
  2. O. A. Lipina, L. L. Surat, M. A. Melkozerova, et al., J. Solid State Chem. 206, 117 (2013). https://doi.org/10.1016/j.jssc.2013.08.002
  3. O. A. Lipina, L. L. Surat, M. A. Melkozerova, A. P. Tyutyunnik, I. I. Leonidov, and V. G. Zubkov, Opt. Spectrosc. 116, 695 (2014). https://doi.org/10.1134/S0030400X14050130
  4. O. A. Lipina, L. L. Surat, A. P. Tyutyunnik, et al., Cryst. Eng. Commun., 1 (2015). https://doi.org/10.1039/c5ce00063g
  5. P. A. Arsen’ev, L. M. Kovba, Kh. S. Bagdasarov, et al., Compounds of Rare Earth Elements. Systems with Oxides of Elements of I–III Groups (Nauka, Moscow, 1983) [in Russian].
  6. L. N. Dem’yanets, A. N. Lobachev, and G. A. Emel’yanenko, Rare Earth Germanates (Nauka, Moscow, 1980) [in Russian].
  7. K. I. Portnoi and N. I. Timofeeva, Oxygen Compounds of Rare Earth Elements (Metallurgiya, Moscow, 1986) [in Russian].
  8. I. A. Bondar’, N. V. Vinogradova, L. N. Dem’yanets, et al., Compounds of Rare Earth Elements. Silicates, Germanates, Phosphates, Arsenates, Vanadates (Nauka, Moscow, 1983) [in Russian].
  9. N. A. Toropov, V. P. Barzakovskii, V. V. Lapin, and N. N. Kudryavtseva, State Diagrams of Silicate Systems. Binary Systems, Reference Book (Nauka, Leningrad, 1969), No. 1 [in Russian].
  10. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data, User’s Manual (Bruker AXS, Karlsruhe, Germany, 2008).
  11. L. T. Denisova, L. A. Irtyugo, N. V. Belousova, et al., Russ. J. Phys. Chem. A 93, 598 (2019). https://doi.org/10.1134/S003602441903004X
  12. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3243 (1932). https://doi.org/10.1021/ja01347a029
  13. A. G. Morachevskii, I. B. Sladkov, and E. G. Firsova, Thermodynamic Calculations in Chemistry and Metallurgy (Lan’, St. Petersburg, 2018) [in Russian].
  14. A. F. Prekul, V. A. Kazantsev, N. M. Shchegolikhina, R. I. Gulyaeva, and K. Edagaw, Phys. Solid State 50, 2013 (2008). https://doi.org/10.1134/S1063783408110024
  15. G. K. Moiseev, N. A. Vatolin, L. A. Marshuk, and N. I. Il’inykh, Temperature Dependences of the Reduced Gibbs Energy of Some Inorganic Substances (Alternative Data Bank ASTRA. OWN) (URO RAN, Ekaterinburg, 1997) [in Russian].
  16. K. S. Gavrichev, M. A. Ryumin, V. M. Gurevich, and A. V. Tyurin, Inorg. Mater. 50, 917 (2014). https://doi.org/10.1134/S0020168514090039
  17. V. N. Gus’kov, P. G. Gagarin, A. V. Tyurin, A. V. Khoroshilov, A. V. Guskov, and K. S. Gavrichev, Russ. J. Phys. Chem. A 94, 233 (2020). https://doi.org/10.1134/S0036024420020120
  18. V. N. Guskov, K. S. Gavrichev, P. G. Gagarin, and A. V. Guskov, Russ. J. Inorg. Chem. 64, 1265 (2019). https://doi.org/10.1134/S0036023619100048
  19. K. Popa, F. Jutier, F. Wastin, and R. J. M. Konings, J. Chem. Thermodyn. 38, 1306 (2006). https://doi.org/10.1016/j.jct.2006.02.006
  20. G. E. Nikiforova, O. N. Kondrat’eva, A. V. Tyurin, M. A. Ryumin, A. V. Khoroshilov and K. S. Gavrichev, Russ. J. Inorg. Chem. 66, 237 (2021). https://doi.org/10.1134/S0036023621020145
  21. A. T. M. G. Mostafa, J. M. Eakman, M. M. Montoya, and S. L. Yarbro, Ind. Eng. Chem. Res. 35, 343 (1996).
  22. J. Leitner, D. Sedmidubský, and P. Chuchvalec, Ceram.-Silikaty 46, 29 (2002).
  23. J. Leitner, P. Chuchvalec, D. Sedmidudský, et al., Thermochim. Acta 395, 27 (2003).
  24. L. Qiu and M. A. White, J. Chem. Educ. 78, 1076 (2001). https://doi.org/10.1021/ed078p1076
  25. J. Leitner, P. Voňka, D. Sedmidubský, and P. Svoboda, Thermochim. Acta 497, 7 (2010). https://doi.org/10.1016/j.tca.2009.08.002
  26. C. B. Alcock and O. Kubaschewski, Metallurgical Thermochemistry, 5th ed., International Series on Materials Science and Technology (Pergamon, Oxford, 1979).
  27. V. N. Kumok, Direct and Inverse Problems of Chemical Thermodynamics (Nauka, Novosibirsk, 1987), p. 108 [in Russian].
  28. L. T. Denisova, L. A. Irtyugo, V. V. Beletskii, N. V. Belousova, and V. M. Denisov, Phys. Solid State 60, 626 (2018). https://doi.org/10.1134/S1063783418030071
  29. L. A. Reznitskii, Solid State Calorimetry (Structural, Magnetic, Electronic Transformations) (Mosk. Gos. Univ., Moscow, 1981) [in Russian].
  30. Yu. D. Tret’yakov, Solid-State Reactions (Khimiya, Moscow, 1978) [in Russian].