Impedance Study of the Conductivity of Solid Oxide Electrolyte Films SrZr0.95Y0.05O3–δ and CaZr0.9Y0.1O3–δ

L. A. Dunyushkina L. A. Dunyushkina
Российский электрохимический журнал
Abstract / Full Text

Information on the across-plane conductivity of films of solid-oxide electrolytes SrZr0.95Y0.05O3–δ and CaZr0.9Y0.1O3–δ deposited on ion-conducting supports is acquired by the impedance method. It is shown that the support/film interface and the intergrain boundaries considerably affect the across-plane charge transfer in the film. The effect of the crystallographic orientation of the YSZ support on the microstructure and conductivity of the CaZr0.9Y0.1O3–δ electrolyte film is demonstrated.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    L. A. Dunyushkina

  1. Jiang, J. and Hertz, J.L., On the variability of reported ionic conductivity in nanoscale YSZ thin films, J. Electroceram., 2014, vol. 32, p. 37.
  2. Kosacki, I., Suzuki, T., Petrovsky, V., and Anderson, H.U., Electrical conductivity of nanocrystalline ceria and zirconia thin films, Solid State Ionics, 2000, vols. 136–137, p. 1225.
  3. Kosacki, I., Rouleau, C.M., Becher, P.F., Bentley, J., and Lowndes, D.H., Surface/interface-related conductivity in nanometer thick YSZ films, Electrochem. Solid-State Lett., 2004, vol. 7, p. A459.
  4. Guo, X., Vasco, E., Mi, S.B., Szot, K., Wachsman, E., and Waser, R., Ionic conduction in Zirconia films of nanometer thickness, Acta Mater., 2005, vol. 53, p. 5161.
  5. Frenkel’, Ya.I., Sobranie izbrannykh trudov, Tom 3 (Collection of Selected Works, Vol. 3), Moscow: Akad. Nauk SSSR, 1959.
  6. Kliewer, K.L. and Koehler, J.S., Space charge in ionic crystals. I. General approach with application to NaCl, Phys. Rev., 1965, vol. 140, p. 1226.
  7. Chebotin, V.N. and Perfil’ev, V.N., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Metallurgiya, 1978.
  8. Kim, S. and Maier, J., On the conductivity mechanism of nanocrystalline ceria, J. Electrochem. Soc., 2002, vol. 149, p. J73.
  9. Hwang, S. L. and Chen, I.-W., Grain size control of tetragonal zirconia polycrystals using the space charge concept, J. Amer. Ceram. Soc., 1990, vol. 73, p. 3269.
  10. Blom, D. A. and Chiang, Y.-M., Interfacial segregation in ionic conductors: ceria, Mater. Res. Soc. Symp. Proc., 1997, vol. 458, p. 127.
  11. Guo, X. and Ding, Y., Grain boundary space charge effect in zirconia. Experimental evidence, J. Electrochem. Soc., 2004, vol. 151, p. J1.
  12. Iguchi, F., Sata, N., and Yugami, H., Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC, J. Mater. Chem., 2010, vol. 20, p. 6265.
  13. Shirpour, M., Merkle, R., and Maier, J., Evidence for space charge effect in Y-doped BaZrO3 from reduction experiment, Solid State Ionics, 2012, vol. 225, p. 304.
  14. Kim, H.-R., Kim, J.-C., Lee, K.-R., Ji, H.-I., Lee, H.-W., Lee, J.-H., and Son, J.-W., “Illusional” nano-size effect due to artifacts of in-plane conductivity measurements of ultra-thin films, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 6133.
  15. Tunneling Phenomena in Solids, Burstein, S. and Lundquist, S. (Eds.), New York: Plenum, 1969; translated into Russian.
  16. Dunyushkina, L.A., Vshivkova, A.I., Pankratov, A.A., Antonov, B.D., and Gorelov, V.P., Yttria stabilized zirconia solid electrolyte surface modification with ZrO2, Y2O3, and ZrO2 + 9 mol % Y2O3 films, Russ. J. Electrochem., 2010, vol. 46, p. 767.]
  17. Dunyushkina, L.A., Plaksin, S.V., Pankratov, A.A., Kuzmina, L.A., Kuimov, V.M., and Gorelov, V.P., Synthesis and properties of CaZrO3 films on YSZ electrolyte surface, Russ. J. Electrochem., 2011, vol. 47, p. 1274.
  18. Dunyushkina, L.A., Smirnov, S.V., Plaksin, S.V., Kuimov, V.M., and Gorelov, V.P., The across-plane conductivity and microstructure of SrZr0.95Y0.05O3–δ thin films, Ionics, 2013, vol. 19, p. 1715.
  19. Dunyushkina, L.A., Smirnov, S.V., Kuimov, V.M., and Gorelov, V.P., Electrical conductivity of CaZr0.9Y0.1O3–δ films deposited from liquid solutions, Int. J. Hydrogen Energy, 2014, vol. 39, p. 18385.
  20. Gorelov, V.P., Balakireva, V.B., and Kuzmin, A.V., Partial conductivities in perovskites CaZr1–xScxO3–α (x = 0.03–0.20) in an oxidation atmosphere, Phys. Solid State, 2016, vol. 58, p. 12.
  21. Bao, J., Okuyama, Y., Shi, Z., Fukatsu, N., and Kurita, N., Properties of electrical conductivity in Y-doped CaZrO3, Mater. Trans., 2012, vol. 53, p. 973.
  22. Gorelov, V.P., Balakireva, V.B., Kuzmin, A.V., and Plaksin S.V., Electrical conductivity of CaZr1–xScxO3–α (x = 0.01–0.20) in dry and humid air, Inorg. Mater., 2014, vol. 50, p. 495.
  23. Huang, P. and Petric, A., Electrical conduction of yttrium-doped strontium zirconate, J. Mater. Chem., 1995, vol. 5 (1), p. 53.
  24. Bao, J., Ohno, H., Kurita, N., Okuyama, Y., and Fukatsu, N., Proton conduction in Al-doped CaZrO3, Electrochim. Acta, 2011, vol. 56, p. 1062.
  25. Hwang, S. and Choi, G., The effect of cation nonstoichiometry on the electrical conductivity of acceptordoped CaZrO3, Solid State Ionics, 2006, vol. 177, p. 3099.
  26. Irvine, J., Sinclair, D., and West, A., Electroceramics: characterisation by ac impedance spectroscopy, Adv. Mater., 1990, vol. 2, p. 132.
  27. Higuchi, T., Tsukamoto, T., Sata, N., Hiramoto, K., Ishigame, M., and Shin, S. Protonic conduction in the single crystals of SrZr0.95M0.05O3 (M = Y, Sc, Yb, Er), Jpn. J. Appl. Phys., 2001, vol. 40, p. 4162.
  28. Guo, X. and Maier, J., Grain boundary blocking effect in zirconia: a Schottky barrier analysis, J. Electrochem. Soc., 2001, vol. 148, p. E121.
  29. Dudek, M. and Bućko, M., Ceramic electrolytes based on (Ba1–xCax)(Zr0.9Y0.1)O3 solid solution, J. Solid State Electrochem., 2010, vol. 14, p. 565.