Electrochemical Synthesis of In2Se3 Thin Films from Citrate Bath. Structural, Optical and Morphological Investigations

 Oualid Dilmi Oualid Dilmi ,  Mohamed Benaicha Mohamed Benaicha
Российский электрохимический журнал
Abstract / Full Text

In this work, indium selenide In2Se3 thin films were synthesized by electrodeposition in potentiostatic mode from aqueous solution containing InCl3 and SeO2 in acid medium (pH 4.2) with sodium citrate as complexing agent at ambient temperature with heat treatment of electrodeposited films at different temperatures. Voltammetry method was used to investigate the electrochemical behavior of the electrodeposition bath. The structural characterization of elaborate films was performed by X-rays diffraction (XRD) and Raman spectroscopy, the morphological one was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), the UV–Visible spectrophotometry was used to investigate their optical proprieties, whereas the Mott–Schottky measurement was used also to study their semiconducting properties. The results showed that the annealed deposit at 350, 450°C and the as-deposited films take the rhombohedral β-crystalline phase hR5 of In2Se3, as-deposited and annealed In2Se3 are photoactive thin films with band-gap energies 1.33, 1.55 eV respectively and belong to n-type semiconductors with number of charge carriers in order of 1021/cm3. The obtained deposits have nanometric grain size and less roughness surface.

Author information
  • Energetic and Solid State Electrochemistry Laboratory, Ferhat Abbas-Setif 1 University, 19000, Setif, Algeria

    Oualid Dilmi &  Mohamed Benaicha

  1. Marsillac, S., Combot Marie, A.M., Bernede, J.C., and Conan, A., Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction, Thin Solid Films, 1996, vol. 288, p. 14.
  2. Hariskos, D., Spiering, S., and Powalla, M., Buffer layers in Cu(In,Ga)Se2 solar cells and modules, Thin Solid Films, 2005, vol. 480, p. 99.
  3. Gordillo, G. and Calderón, C., CIS thin film solar cells with evaporated InSe buffer layers, Sol. Energy Mater. Sol. Cells, 2003, vol. 77, p. 163.
  4. Thomas, B., Effect of in situ post-deposition annealing on the formation of α-In2Se3 thin films grown by elemental evaporation, Appl. Phys. A, 1992, vol. 54, p. 293.
  5. Amory, C., Bernede, J.C., Halgand, E., and Marsillac, S., Cu(In,Ga)Se2 films obtained from γ-In2Se3 thin film, Thin Solid Films, 2003, vol. 431–432, p. 22.
  6. Li, S., Yan, Y., Zhang, Y., Ou, Y., Ji, Y., Liu, L., Yan, C., Zhao, Y., and Yu, Z., Monophase γ-In2Se3 thin film deposited by magnetron radio-frequency sputtering, Vacuum, 2014, vol. 99, p. 228.
  7. Yan, Y., Li, S., Ji, Y., Liu, L., Yan, C., Zhang, Y., Yu, Z., and Zhao, Y., Fabrication of high-quality γ-In2Se3 nanostructures using magnetron sputtering, Mater. Lett., 2013, vol. 109, p. 291.
  8. Bernède, J.C., Marsillac, S., and Conan A., Electrical properties of γ-In2Se3 layers synthesized by solid state reaction between In and Se thin films, Mater. Chem. Phys., 1997, vol. 48, p. 5.
  9. Hsiang, H.I., Lu, L.H., Chang, Y.L., Ray, D., and Yen, F.S., CuInSe2 nanocrystallite reaction kinetics using solid state reaction from Cu2Se and In2Se3 powders, J. Alloys Compd., 2011, vol. 509, p. 6950.
  10. Okamoto, T., Yamada, A., and Konagai, M., Growth and characterization of In2Se3 epitaxial films by molecular beam epitaxy, J. Cryst. Growth, 1997, vol. 175, p. 1045.
  11. Chang, K.J., Lahn, S.M., Xie, Z.J., Chang, J.Y., Uen, W.Y., Lu, T.U., Lin, J.H., and Lin, T.Y., The growth of single-phase In2Se3 by using metal organic chemical vapor deposition with AlN buffer layer, J. Cryst. Growth, 2007, vol. 306, p. 283.
  12. Huang, Y.C., Li, ZY., Uen, W.Y., Lan, S.M., Chang, K.J., Xie, Z.J., Chang, J.Y., Wang, S.C., and Shen, J.L., Growth of γ-In2Se3 films on Si substrates by metal-organic chemical vapor deposition with different temperatures, J. Cryst. Growth, 2008, vol. 310, p. 1679.
  13. Wei, X.F., Li, L.W., Feng, H.G., Gong, J.B., Jiang, K., and Xue, S.L., Preparation and optical properties of In2Se3 nanospheres using CTAB as surface modifier, Ceram. Int., 2020, vol. 46, p. 1026.
  14. Simi, N.J., Vanchipurackal, and Ison, V., Structural and optical characterization of CuInS2–In2Se3 green nanostructures synthesized by hot injection method, Mater. Today Proc., 2019, vol. 8, p. 203.
  15. Wei, X., Feng, H., Li, L., Gong, J., Jiang, K., Xue, S., and Chu, P.K., Synthesis of tetragonal prismatic γ‑In2Se3 nanostructures with predominantly {110} facets and photocatalytic degradation of tetracycline, Appl. Catal. B, 2020, vol. 260, p. 118218.
  16. Massaccesi, S., Sanchez, S., and Vedel, J., Electrodeposition of indium selenide In2Se3, J. Electroanal. Chem., 1996, vol. 412, p. 95.
  17. Valdés, M., Vázquez, M., and Goossens, A., Electrodeposition of CuInSe2 and In2Se3 on flat and nanoporous TiO2 substrates, Electrochim. Acta, 2008, vol. 54, p. 524.
  18. Lai, Y., Liu, F., Li, J., Zhang, Z., and Liu, Y., Nucleation and growth of selenium electrodeposition onto tin oxide electrode, J. Electroanal. Chem., 2010, vol. 639, p. 187.
  19. Wang, J., Li, Q., Mu, Y., Li, S., Yang, L., Lv, P., Su, S., Liu, T., Fu, W., and Yang, H., Fabrication of CdTe thin films grown by the two-step electrodeposition technique on Ni foils, J. Alloys Compd., 2015, vol. 636, p. 97.
  20. Czerniawski, J.M. and Stickney, J.L., Electrodeposition of In2Se3 using potential pulse atomic layer deposition, J. Phys. Chem. C, 2016, vol. 120, p. 16162.
  21. Herrero, J. and Ortega, J., Electrochemical synthesis of photoactive In2Se3 thin films, Sol. Energy Mater., 1987, vol. 16, p. 477.
  22. Shi, H., Li, M., Shaygan Nia, A., Wang, M., Park, S., Zhang, Z., Lohe, R.M., Yang, S., and Feng, X., Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics, Adv. Mater., 2020, vol. 32, p. 1907244.
  23. Pourbaix, M., Atlas d’équilibre électrochimique à 25°C, Gauthier-Villars et Cie, 1963.
  24. Zein El Abedin, S., Saad, A.Y., Farag, H.K., Borisenko, N., Liu, Q.X., and Endres, F., Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures, Electrochim. Acta, 2007, vol. 52, p. 2746.
  25. Senthikumar, M., Mathiyarasu, J., Joseph, J., Phani, K.L.N., and Yegnaraman, V., Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization, Mater. Chem. Phys., 2003, vol. 108, p. 403.
  26. Lutz, H. D., Fischer, M., Baldus, H.-P., and Blachnik, R., Zur polymorphie des In2Se3, J. Less-Common Met., 1988, vol. 143, p. 83.
  27. Jenkins, R. and Snyder, R.L., Introduction to X-ray Powder Diffractometry, New York: Wiley, 1996.
  28. Weszka, J., Daniel, P., Burian, A., Burian, A.M., and Nguyen, A.T., Raman scattering in In2Se3 and InSe2 amorphous films, J. Non-Cryst. Solids, 2000, vol. 265, p. 98.
  29. Singh, R.P., Singh, S.L., and Chandra, S., Electrodeposited semiconducting CuInSe2 films. I. Preparation, structural and electrical characterization, J. Phys. D: Appl. Phys., 1986, vol. 19, p. 1299.
  30. Gonzalez-Hernandez, J., Gorley, P.M., Holrley, P.P., Vartsabyuk, O.M., and Vorobiev, Yu.V., X-ray, kinetic and optical properties of thin CuInS2 films, Thin Solid Films, 2002, vol. 403-404, p. 471.
  31. Yamaguchi, T., Yamamoto, Y., Tanaka, T., Tanashi, N., and Yoshida, A., Influence of annealing temperature on the properties of Cu(In,Ga)Se2 thin films by thermal crystallization in Se vapor, Sol. Energy Mater. Sol. Cells, 1998, vol. 50, p. 1.
  32. Huang, C.J., Meen, T.H., Lai, M.Y., and Chen, W.R., Formation of CuInSe2 thin films on flexible substrates by electrodeposition (ED) technique, Sol. Energy Mater. Sol. Cells, 2004, vol. 82, p. 553.
  33. Sadigov, M.S., Ozkan, M., Bacaksiz, E., Altunbas, M., and Kopya, A.I., Production of CuInSe2 thin films by a sequential processes of evaporations and selenization, J. Mater. Sci., 1999, vol. 34, p. 4579.
  34. Tripathy, S.K., Refractive indices of semiconductors from energy gaps, Opt. Mater., 2015, vol. 46, p. 240.
  35. El-Shair, H.T. and Bekheet, A.E., Effect of heat treatment on the optical properties of In2Se3 thin films, J. Phys. D: Appl. Phys., 1992, vol. 25, p. 1122.
  36. Aly, S.A., El Sayed, N.Z., and Kaid, M.A., Effect of annealing on the optical properties of thermally evaporated ZnO films, Vacuum, 2001, vol. 61, p. 1.
  37. Qasrawi, A.F., Temperature dependence of the direct allowed transitions band gap and optical constants of polycrystalline α-In2Se3 thin films, Thin Solid Films, 2006, vol. 514, p. 267.
  38. El-Nahass, M.M., Saleh, A.-B.A., Darwish, A.A.A., and Bahlol, M.H., Optical properties of nanostructured InSe thin films, Opt. Commun., 2012, vol. 285, p. 1221.
  39. Peng, L.P., Fang, L., Yang, X.F., Li, Y.J., Huang, Q.L., Wu, F., and Kong, C.Y., Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films, J. Alloys Compd., 2009, vol. 484, p. 575.
  40. Rousset, J., Saucedo, E., and Lincot, D., Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications, Chem. Mater., 2009, vol. 21, p. 534.
  41. Windisch, C.F. and Exarhos, G.J., Mott–Schottky analysis of thin ZnO films, J. Vac. Sci. Technol., 2000, vol. 18, p. 1677.
  42. Mora-Sero, I., Fabregat-Santiago, F., Denier, B., Bisquert, J., Tena-Zaera, R., Elias, J., and Levy-Clement, C., Determination of carrier density of ZnO nanowires by electrochemical techniques, Appl. Phys. Lett., 2006, vol. 89, p. 203117.
  43. Morrison, S.R., Electrochemistry at Semiconductor and Oxidized Metal Electrodes, New York: Plenum Press, 1980.