Examples



mdbootstrap.com



 
Статья
2022

Zinc(II) metal-organic frameworks with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide: control of the parameters of the cationic porous framework and optical properties


P. A. DemakovP. A. Demakov, D. G. SamsonenkoD. G. Samsonenko, D. N. DybtsevD. N. Dybtsev, V. P. FedinV. P. Fedin
Российский химический вестник
https://doi.org/10.1007/s11172-022-3380-y
Abstract / Full Text

Four zinc metal-organic frameworks (MOFs) with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide (odabco) as a bridging ligand were synthesized by varying the solvent and the anionic composition of the reaction medium. The synthesis in a mixture of N, N-dimethylacetamide and water acidified with nitric acid affords the compound [Zn2(odabco)3(OAc)2](NO3)2(1) containing coordinated acetate anions. The compound [Zn2(μ-O)(odabco)3](NO3)2 · NMP · 2H2O (2) crystallizes in a mixture of N-methylpyrrolidone (NMP) and water in the presence of triethylamine as the base. The compound [Zn2(odabco)4](NO3)3(ClO4) · 2 DMF (3) was obtained in N,N-dimethylformamide (DMF) acidified with perchloric acid. The synthesis in a mixture of DMF and dioxane (dox) acidified with a larger amount of perchloric acid produces [Zn(odabco)2](NO3)(ClO4) · 0.4 dox (4). The crystal structures of new compounds 2–4 were determined by single-crystal X-ray diffraction. Compound 2 consists of binuclear {Zn2O}2+ units, serving as nodes in the three-dimensional framework with pcu topology and a solvent-accessible volume (Vpore) of 37%. The isomeric metal-organic coordination frameworks of 3 (Vpore = 42%) and 4 (Vpore = 47%) are built from mononuclear units and have a BCT zeolite topology. The optical absorption of compounds 1–4 was characterized by diffuse reflectance spectroscopy.

Author information
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 prosp. Akad. Lavrentieva, 630090, Novosibirsk, RussiaP. A. Demakov, D. G. Samsonenko, D. N. Dybtsev & V. P. Fedin
References
  1. S. Mukherjee, A. V. Desai, S. K. Ghosh, Coord. Chem. Rev., 2018, 367, 82; DOI: https://doi.org/10.1016/j.ccr.2018.04.001.
  2. Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, H. C. Zhou, Coord. Chem. Rev., 2018, 354, 28; DOI: https://doi.org/10.1016/j.ccr.2017.06.007.
  3. V. V. Arslanov, M. A. Kalinina, E. V. Ermakova, O. A. Raitman, Yu. G. Gorbunova, O. E. Aksyutin, A. G. Ishkov, V. A. Grachev, A. Yu. Tsivadze, Russ. Chem. Rev., 2019, 88, 775; DOI: https://doi.org/10.1070/RCR4878.
  4. M. Ding, W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev., 2019, 48, 2828; DOI: https://doi.org/10.1039/C8CS00829A.
  5. A. Yu. Tsivadze, O. E. Aksyutin, A. G. Ishkov, M. K. Knyazeva, O. V. Solovtsova, I. E. Men’shchikov, A. A. Fomkin, A. V. Shkolin, E. V. Khozina, V. A. Grachev, Russ. Chem. Rev., 2019, 88, 925; DOI: https://doi.org/10.1070/RCR4873.
  6. A. A. Sapianik, V. P. Fedin, Russ. J. Coord. Chem., 2020, 46, 443; DOI: https://doi.org/10.1134/S1070328420060093.
  7. M. Viciano-Chumillas, M. Mon, J. Ferrando-Soria, A. Corma, A. Leyva-Pérez, D. Armentano, E. Pardo, Acc. Chem. Res., 2020, 53, 520; DOI: https://doi.org/10.1021/acs.accounts.9b00609.
  8. S. A. Sapchenko, M. O. Barsukova, T. V. Nokhrina, K. A. Kovalenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 461; DOI: https://doi.org/10.1007/s11172-020-2785-8.
  9. S. Ali Akbar Razavi, A. Morsali, Coord. Chem. Rev., 2020, 415, 213299; DOI: https://doi.org/10.1016/j.ccr.2020.213299.
  10. A. E. Thorarinsdottir, T. D. Harris, Chem. Rev., 2020, 120, 8716; DOI: https://doi.org/10.1021/acs.chemrev.9b00666.
  11. D. N. Dybtsev, K. P. Bryliakov, Coord. Chem. Rev., 2021, 437, 213845; DOI: https://doi.org/10.1016/j.ccr.2021.213845.
  12. A. A. Sapianik, K. D. Smirnov, M. O. Barsukova, D. G. Samsonenko, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2019, 60, 609; DOI: https://doi.org/10.1134/S0022476619040115.
  13. M. S. Zavakhina, D. G. Samsonenko, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2019, 60, 279; DOI: https://doi.org/10.1134/S0022476619020136.
  14. I. E. Ushakov, A. S. Goloveshkin, E. N. Zorina-Tikhonova, A. S. Chistyakov, A. A. Sidorov, I. L. Eremenko, A. D. Volodin, A. V. Vologzhanina, Mendeleev Commun., 2019, 29, 643; DOI: https://doi.org/10.1016/j.mencom.2019.11.012.
  15. A. A. Sapianik, E. E. Semenenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2018, 59, 487; DOI: https://doi.org/10.1134/S0022476618020336.
  16. K. S. Smirnova, E. V. Lider, S. G. Kozlova, T. S. Sukhikh, N. V. Kuratieva, I. P. Pozdniakov, A. S. Potapov, Russ. Chem. Bull., 2020, 69, 1873; DOI: https://doi.org/10.1007/s11172-020-2973-6.
  17. K. A. Vinogradova, A. Y. Andreeva, D. P. Pishchur, M. B. Bushuev, J. Struct. Chem. (Engl. Transl.), 2020, 61, 1380; DOI: https://doi.org/10.1134/S0022476620090048.
  18. D. I. Pavlov, A. A. Ryadun, D. G. Samsonenko, V. P. Fedin, A. S. Potapov, Russ. Chem. Bull., 2021, 70, 857; DOI: https://doi.org/10.1007/s11172-021-3159-6.
  19. P. A. Demakov, A. A. Ryadun, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2020, 61, 1965; DOI: https://doi.org/10.1134/S002247662012015X.
  20. Yu. M. Litvinova, Ya. M. Gayfulin, D. G. Samsonenko, P. V. Dorovatovsky, V. A. Lazarenko, Yu. V. Mironov, J. Struct. Chem. (Engl. Transl.), 2020, 61, 1630; DOI: https://doi.org/10.1134/S0022476620100169.
  21. A. N. Usoltsev, S. A. Adonin, A. S. Novikov, M. N. Sokolov, V. P. Fedin, Russ. J. Coord. Chem., 2020, 46, 23; DOI: https://doi.org/10.1134/S107032842001008X.
  22. T. K. Kim, K. J. Lee, J. Y. Cheon, J. H. Lee, S. H. Joo, H. R. Moon, J. Am. Chem. Soc., 2013, 135, 8940; DOI: https://doi.org/10.1021/ja401869h.
  23. B. Bueken, N. Van Velthoven, A. Krajnc, S. Smolders, F. Taulelle, C. Mellot-Draznieks, G. Mali, T. D. Bennett, D. De Vos, Chem. Mater., 2017, 29, 10478; DOI: https://doi.org/10.1021/acs.chemmater.7b04128.
  24. P. J. Llabres-Campaner, J. Pitarch-Jarque, R. Ballesteros-Garrido, B. Abarca, R. Ballesteros, E. García-España, Dalton Trans., 2017, 46, 7397; DOI: https://doi.org/10.1039/C7DT00855D.
  25. P. A. Demakov, S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2018, 67, 490; DOI: https://doi.org/10.1007/s11172-018-2098-3.
  26. L. K. Macreadie, E. J. Mensforth, R. Babarao, K. Konstas, S. G. Telfer, C. M. Doherty, J. Tsanaktsidis, S. R. Batten, M. R. Hill, J. Am. Chem. Soc., 2019, 141, 3828; DOI: https://doi.org/10.1021/jacs.8b13639.
  27. E. S. Bazhina, N. V. Gogoleva, E. N. Zorina-Tikhonova, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, J. Struct. Chem. (Engl. Transl.), 2019, 60, 855; DOI: https://doi.org/10.1134/S0022476619060015.
  28. V. D. Slyusarchuk, P. E. Kruger, C. S. Hawes, ChemPlusChem, 2020, 85, 845; DOI: https://doi.org/10.1002/cplu.202000206.
  29. P. A. Demakov, A. S. Poryvaev, K. A. Kovalenko, D. G. Samsonenko, M. V. Fedin, V. P. Fedin, D. N. Dybtsev, Inorg. Chem., 2020, 59, 15724; DOI: https://doi.org/10.1021/acs.inorgchem.0c02125.
  30. D.-L. Long, A. J. Blake, N. R. Champness, M. Schröder, Chem. Commun., 2000, 1369; DOI: https://doi.org/10.1039/B002363I.
  31. D.-L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schroder, Angew. Chem., Int. Ed., 2001, 40, 2443; DOI: https://doi.org/10.1002/1521-3773(20010702)40:13<2443::AID-ANIE2443>3.0.CO;2-C.
  32. D.-L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, C. Wilson, M. Schröder, Chem. Eur. J., 2005, 11, 1384; DOI: https://doi.org/10.1002/chem.200400594.
  33. L. Chen, Q. Ji, X. Wang, Q. Pan, X. Cao, G. Xu, CrystEngComm, 2017, 19, 5907; DOI: https://doi.org/10.1039/C7CE00964J.
  34. P. A. Demakov, Y. A. Yudina, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2021, 62, 403; DOI: https://doi.org/10.1134/S0022476621030069.
  35. P. A. Demakov, A. S. Romanov, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 1511; DOI: https://doi.org/10.1007/s11172-020-2930-4.
  36. F.-X. Sun, G.-S. Zhu, Q.-R. Fang, S.-L. Qiu, Inorg. Chem. Commun., 2007, 10, 649; DOI: https://doi.org/10.1016/j.inoche.2007.01.027.
  37. CrysAlisPro 1.171.38.46, Rigaku Oxford Diffraction, 2015.
  38. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.
  39. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.
  40. A. L. Spek, Acta Crystallogr., 2015, C71, 9; DOI: https://doi.org/10.1107/S0021889802022112.