Examples



mdbootstrap.com



 
Статья
2021
Abstract / Full Text

The first calculations of the electronic structure and X-ray photoelectron spectrum (XPS) of valence electrons of BkO2 in the 0 to ~50 eV range of binding energies are made via relativistic discrete-variational method (RDV). Satisfactory agreement is established between the calculated and experimental spectra of this dioxide, obtained in the works of other authors. A quantitative molecular orbitals (MO) scheme is constructed that allows us to understand the nature of the chemical bonds and the structure of the XPS of valence electrons in BkO2. In contrast to the concepts of the crystal field theory, the effects of covalence in BkO2 are considerable and result in strong overlapping not only of the Bk6d, but of Bk6p, 5f atomic orbitals (AO) with ligand orbitals as well. It is found that the electrons of inner valence molecular orbitals (IVMO) weaken the chemical bonds caused by the electrons of outer valence molecular orbitals (OVMO) by 28%.

Author information
  • Department of Chemistry, Moscow State University, 119991, Moscow, RussiaA. E. Putkov, Yu. A. Teterin, K. I. Maslakov, S. N. Kalmykov & V. G. Petrov
  • National Research Center Kurchatov Institute, 123182, Moscow, RussiaYu. A. Teterin, A. Yu. Teterin, K. E. Ivanov & S. N. Kalmykov
  • Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, RussiaM. V. Ryzhkov
References
  1. The Chemistry of the Actinide Elements, Ed. by J. J. Katz, G. T. Seaborg, and L. R. Morss (Chapman and Hall, London, New York, 1986).
  2. Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey, et al., Phys. Rev. Lett. 104, 142502 (2010).
  3. Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, et al., Phys. Rev. Lett. 109, 162501 (2012).
  4. The Chemistry of the Actinide and Transactinide Elements, Ed. by L. R. Morss, N. M. Edelstain, and J. Fuger, 4th ed. (Springer, Netherlands, 2010).
  5. M. P. Mefod’eva and N. N. Krot, Compounds of Transuranic Elements (Nauka, Moscow, 1987) [in Russian].
  6. K. D. Sevier, At. Data Nucl. Data Tables 24, 323 (1979).
  7. K. T. Moor and G. van der Laan, Rev. Mod. Phys. 81, 235 (2009).
  8. M. O. Krause and C. W. Nestor, Phys. Scr. 16, 285 (1977).
  9. B. W. Veal, D. J. Lam, H. Diamond, and H. R. Hoekstra, Phys. Rev. B 15, 2929 (1977).
  10. M. O. Krause, R. G. Haire, O. Keski-Rahkonen, et al., J. Electron Spectrosc. Rel. Phenom. 47, 215 (1988).
  11. A. Kotani and H. Ogasawara, Phys. B (Amsterdam, Neth.) 186–188, 16 (1993).
  12. D. Prodan, G. E. Scuseria, and R. L. Martin, Phys. Rev. B 76, 033101 (2007).
  13. L. Petit, A. Svain, Z. Szotek, et al., Phys. Rev. B 81, 045108 (2010).
  14. X.-D. Wen, R. L. Martin, T. M. Henderson, et al., Chem. Rev. 113, 1063 (2013).
  15. V. A. Gubanov, A. Rosen, and D. E. Ellis, J. Phys. Chem. Solids 40, 17 (1979).
  16. Yu. A. Teterin, A. Yu. Teterin, K. E. Ivanov, et al., Phys. Rev. B 89, 035102 (2014).
  17. Yu. A. Teterin, K. I. Maslakov, A. Yu. Teterin, et al., Phys. Rev. B 87, 245108 (2013).
  18. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).
  19. A. D. Panov, Preprint No. IAE-6019/15 (Inst. At. Energy, Moscow, 1997).
  20. J. R. Peterson and B. B. Cunningham, Trans. J. Brit. Ceram. Soc. 83, 32 (1984).
  21. R. D. Baybarz, J. Inorg. Nucl. Chem. 30, 1769 (1968).
  22. A. Rosen and D. E. Ellis, J. Chem. Phys. 62, 3039 (1975).
  23. D. E. Ellis and G. L. Goodman, Int. J. Quantum Chem. 25, 185 (1984).
  24. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
  25. P. Pyykko and H. Toivonen, Acta Acad. Aboensis, Ser. B 43, 1(1983).
  26. D. A. Varshalovish, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).
  27. A. Y. Teterin, M. V. Ryzhkov, Y. A. Teterin, et al., Radiochemistry 51, 560 (2009).
  28. K. I. Maslakov, Yu. A. Teterin, M. V. Ryzhkov, et al., Int. J. Quantum Chem., e26040 (2019).
  29. M. B. Trzhaskovskaya and V. G. Yarzhemsky, At. Data Nucl. Data 119, 99 (2018).
  30. Yu. A. Teterin, K. I. Maslakov, M. V. Ryzhkov, et al., Radiochemistry 57, 565 (2015).
  31. Yu. A. Teterin and A. Yu. Teterin, Russ. Chem. Rev. 73, 541 (2004).
  32. A. Zaitsevskii, L. V. Skripnikov, and A. V. Titov, Mendeleev Commun. 26, 307 (2016).
  33. K. I. Maslakov, Yu. A. Teterin, A. J. Popel, et al., Appl. Surf. Sci. 448, 154 (2018).
  34. K. I. Maslakov, Yu. A. Teterin, M. V. Ryzhkov, et al., Phys. Chem. Chem. Phys. 20, 16167 (2018).
  35. Yu. A. Teterin and S. G. Gagarin, Russ. Chem. Rev. 65, 825 (1996).
  36. V. G. Yarzhemsky, A. Yu. Teterin, Yu. A. Teterin, et al., Nucl. Tech. Rad. Protect. 27, 103 (2012).
  37. R. S. Mulliken, Ann. Rev. Phys. Chem. 29, 1 (1978).