Nanocomposite Polymer Electrolytes for the Lithium Power Sources (a Review)

O. V. Yarmolenko O. V. Yarmolenko , A. V. Yudina A. V. Yudina , K. G. Khatmullina K. G. Khatmullina
Российский электрохимический журнал
Abstract / Full Text

Nanocomposite polymer electrolytes represent a perspective class of polymer electrolytes for electrochemical devices in which nanodisperse filler is introduced to the “solvating matrix + lithium salt” base composition. This three-section paper reviews studies devoted to the preparing and investigating of different types of novel nanocomposite polymer electrolytes for lithium power sources carried out for the last 15 years. Its first section is devoted to the solid nanocomposite polymer electrolyte consisting of polyethylene oxide, lithium salt, and nanodisperse filler (Al2O3, TiO2, SiO2, etc.); the second section, to nanocomposite polymer membranes based on the polyvinylidene fluoride-co-hexafluoropropylene that can be used as a substitute for inert polyolefine separator of polypropylene, polyethylene, or their alternating layers. It is this type of the nanocomposite polymer electrolytes that is the most perspective one; the great majority of publications are dedicated to this electrolyte. The third section of the review covers the studies of the nanocomposite polymer electrolytes based on different polymers, oligomers, and co-polymers prepared by different methods. Nanoparticles of Al2O3, TiO2, SiO2, ZnO, MgO, Fe3O4, Ca3(PO4)2, ZrO2, clay, ferroelectric ceramics SrBi4Ti4O15, a compound SO42-–ZrO2, molecular sieves, nanochitin, etc., are discussed as possible additives to the nanocomposite polymer electrolytes. The reference list contains 101 items.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. akad. Semenova 1, Chernogolovka, Moscow oblast, 142432, Russia

    O. V. Yarmolenko, A. V. Yudina & K. G. Khatmullina

  1. Stephan, A.M. and Nahm, K.S., Review on composite polymer electrolytes for lithium batteries, Polymer, 2006, vol. 47, no. 16, p. 5952.
  2. Agrawal, R.C. and Pandey, G.P., Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D: Appl. Phys., 2008, vol. 41, p. 223001.
  3. Yarmolenko, O.V. and Khatmullina, K.G., Polymer electrolytes for lithium power sources: state-of-the-art and development prospect, Al’ternativnaya energetika ekologiya, 2010, no. 3, p. 59.
  4. Yarmolenko, O.V., Nanokompozitnye polimernye elektrolity, Nanostrukturirovannye materialy dlya zapasaniya i preobrazovaniya energii (Nanocomposite Polymer Electrolytes for the Energy Conversion and Storage), Razumov, V.F. and Klyuev, M.V., Eds., Ivanovo: Ivan. Gos. Univ., 2009, p. 177–204.
  5. Yarmolenko, O.V. and Yudina, A.V., Nanocomposite polymeric electrolytes. Part II, Organic and Hybrid Nanomaterials: Trends and Prospects, Razumov, V.F. and Klyuev, M.V., Eds., Ivanovo: Ivan. Gos. Univ., 2013, p. 73–118.
  6. Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., and Schalkwijk, Van W., Nanostructured materials for advanced energy conversion and storage devices, Nature Materials, 2005, vol. 4, no. 5, p. 366.
  7. Borodin, O., Smith, G.D., Bandyopadhyaya, R., Redfern, P., and Curtiss, L.A., Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4, Model. Simul. Mater. Sci. Eng., 2004, vol. 12, p. 73.
  8. Volkov, V.I. and Marinin, A.A., NMR methods for studying ion and molecular transport in polymer electrolytes, Russ. Chem. Rev., 2013, vol. 82, no. 3.
  9. Vogel, M., Herbers, C., and Koch, B., Effects of salt and nanoparticles on the segmental motion of poly(ethylene oxide) in its crystalline and amorphous phases: 2H and 7Li NMR studies, J. Phys. Chem. B., 2008, vol. 112, no. 3, p. 11217.
  10. Chen-Yang, Y.W., Wang, Y.L., Chen, Y.T., Li, Y.K., Chen, H.C., and Chiu, H.Y., Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery, J. Power Sources, 2008, vol. 182, no. 1, p. 340.
  11. Reddy, M.J. and Chu, P.P., 7Li NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite poly(ethylene oxide) electrolyte, J. Power Sources, 2004, vol. 135, nos. 1–2, p. 1.
  12. Money, B.K., Hariharan, K., and Swenson, J., Glass transition and relaxation processes of nanocomposite polymer electrolytes, J. Phys. Chem. B, 2012, vol. 116, no. 26, p. 7762.
  13. Bhattacharya, S. and Ghosh, A., Effect of zno nanoparticles on the structure and ionic relaxation of poly(ethylene oxide)-LiI polymer electrolyte nanocomposites, J. Nanosci. Nanotechnol., 2008, vol. 8, p. 1922.
  14. Reddy, M.J., Chu, P.P., Kumar, J.S., and Rao, U.V.S., Inhibited crystallization and its effect on conductivity in a nano-sized fe oxide composite peo solid electrolyte, J. Power Sources, 2006, vol. 161, p. 535.
  15. Shanmukaraj, D. and Murugan, R., Characterization of PEG: LiClO4 + SrBi4Ti4O15 nanocomposite polymer electrolytes for lithium secondary batteries, J. Power Sources, 2005, vol. 149, p. 90.
  16. Xi, J., Qiu, X., Zheng, S., and Tang, X., Nanocomposite polymer electrolyte comprising PEO/LiClO4 and solid super acid: effect of sulphated-zirconia on the crystallization kinetics of PEO, Polymer, 2005, vol. 46, p. 5702.
  17. Xi, J., Bai, Y., Qiu, X., Zhu, W., Chena, L., and Tang, X., Conductivities and transport properties of microporous molecular sieves doped composite polymer electrolyte used for lithium polymer battery, New J. Chem., 2005, vol. 29, p. 1454.
  18. Angulakshmi, N., Kumar, T.P., Thomas, S., and Stephan, A.M., Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide-LiN(LiN(C2F5SO2)2 polymer electrolytes, Electrochim. Acta, 2010, vol. 55, p. 1401.
  19. Gupta, N., Thokchom, J.S., and Kumar, B., A direct current pulse technique to enhance conductivity of heterogeneous electrolytes, J. Power Sources, 2008, vol. 185, p. 1415.
  20. Stephan, A.M., Kumar, T.P., Thomas, S., Bongiovanni, R., Nair, J.R., Angulakshmi, N., and Pollicino, A., Ca3(PO4)2-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. Part II. interfacial properties investigated by XPS and a.c. impedance studies, J. Appl. Polym. Sci., 2011, vol. 124, p. 3255.
  21. Johan, M.R., Yasin, S.M.M., and Ibrahim, S., Bayesian neural networks model for ionic conductivity of nanocomposite solid polymer electrolyte system (PEO–LiCF3SO3–DBP–ZrO2), Int. J. Electrochem. Sci., 2012, vol. 7, p. 222.
  22. Kim, S. and Park, S.-J., Preparation and ion-conducting behaviors of poly(ethylene oxide)-composite electrolytes containing lithium montmorillonite, Solid State Ionics, 2007, vol. 178, p. 973.
  23. Choudhary, S. and Sengwa, R.J., Effect of different anions of lithium salt and MMT nanofiller on ion conduction in melt-compounded PEO-LiX-MMT electrolytes, Ionics, 2012, vol. 18, p. 379.
  24. Moreno, M., Quijada, R., Ana, M.A.S., Benavente, E., Gomez-Romero, P., and Gonzalez, G., Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte, Electrochim. Acta, 2011, vol. 58, p. 112.
  25. Shukla, N. and Thakur, A.K., Enhancement in electrical and stability properties of amorphous polymer based nanocomposite electrolyte, J. Non-Cryst. Solids, 2011, vol. 357, nos. 22–23, p. 3689.
  26. Shah, Md.S.A.S., Basak, P., and Manorama, S.V., Polymer nanocomposites as solid electrolytes: evaluating ion–polymer and polymer–nanoparticle interactions in PEG-PU/PAN semi-IPNs and titania systems, J. Phys. Chem. C, 2010, vol. 114, no. 33, p. 14281.
  27. Chilaka, N. and Ghosh, S., Solid-state poly(ethylene glycol)-polyurethane/ polymethylmethacrylate/ rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties, Electrochim. Acta, 2012, vol. 62, p. 362.
  28. Chebotarev, V.P., Putsylov, I.A., and Smirnov, S.S., Study of aromatic-polysulfon-based polymer electrolytes, Plasticheskie massy, 2008, no. 1, p. 42.
  29. Smirnov, S.S., Lovkov, S.S., Putsylov, I.A., Smirnov, K.S., and Savostyanov, A.N., Development and investigation of solid polymer electrolytes, Int. Polymer Sci. Technol., 2011, vol. 38, no. 9, p. 37.
  30. Zubtsova, K.S. and Mikhaylova, A.M., Development of technological foundations for the creation of a lithium power source with a solid polymer electrolyte, Al’ternativn. energetika ekologiya, 2013, no. 120, p. 112.
  31. Zubtsova, K.S., Prudnikov, N.V., Dubrova, T.V., Gorskaya, N.I., and Mikhaylova, A.M., Superionic conductors based on polyacrylates for energy and information converters, Al’ternativnaya energetika ekologiya, 2015, no. 20 (184), p. 102.
  32. Aravindan, V., Vickraman, P., Sivashanmugam, A., Thirunakaran, R., and Gopukumar, S., Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries, Curr. Appl. Phys., 2013, vol. 13, p. 293.
  33. Aravindan, V. and Vickraman, P., Nanoparticulate AlO(OH)n filled polyvinylidenefluoride-co-hexafluoropropylene based microporous membranes for lithium ion batteries, J. Renew. Sust. Energy, 2009, vol. 1, no. 2, p. 023108.
  34. Aravindan, V., Senthilkumar, V., Nithiananthi, P., and Vickraman, P., Characterization of poly(vinylidenefluoride-co-hexafluoroprolylene) membranes containing nanoscopic AlO(OH)n filler with Li/LiFePO4 cell, J. Renew. Sust. Energy, 2010, vol. 2, no. 3, p. 033105.
  35. Rharbi, Y., Cabane, B., Vacher, A., Joanicot, M., and Boue, F., Modes of deformation in a soft/hard nanocomposite: a SANS study, Europhys. Lett., 1999, vol. 46, no. 4, p. 472.
  36. Gersappe, D., Molecular mechanisms of failure in polymer nanocomposites, Phys. Rev. Lett., 2002, vol. 89, no. 5, p. 058301.
  37. Aravindan, V., Vickraman, P., and Krishnaraj, K., Li+ ion conduction in TiO2 filled polyvinylidenefluorideco-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LIDFOB, Curr. Appl. Phys., 2009, vol. 9, no. 6, p. 1474.
  38. Shah, D., Maiti, P., Gunn, E., Schmidt, D.F., Jiang, D.D., Batt, C.A., and Giannelis, E.P., Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology, Adv. Mater., 2004, vol. 16, no. 14, p. 1173.
  39. Shah, D., Maiti, P., Jiang, D.D., Batt, C.A., and Giannelis, E.P., Effect of nanoparticle mobility on toughness of polymer nanocomposites, Adv. Mater., 2005, vol. 17, no. 5, p. 525.
  40. Nunes-Pereira, J., Lopes, A.C., Costa, C.M., Leones, R., and Silva, M.M., Porous membranes of montmorillonite/ poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators, Electroanalysis, 2012, vol. 24, no. 11, p. 2147.
  41. Vijayakumar, G. and Karthick, S.N., Sathiyapriya A.R., Ramalingam S., and Subramania A., Effect of nanoscale CeO2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries, J. Solid State Electrochem., 2008, vol. 12, no. 9, p. 1135.
  42. Aravindan, V. and Vickraman, P., Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO2 filler, Mater. Chem. Phys., 2009, vol. 115, no. 1, p. 251.
  43. Aravindan, V., Vickraman, P., and Kumar, T.P., ZrO2 nanofiller incorporated PVC/PVDF blend-based composite polymer electrolytes (CPE) complexed with LIBOB, J. Membr. Sci., 2007, vol. 305, nos. 1–2, p. 146.
  44. Li, Z.H., Xiao, Q.Z., Zhang, P., Zhang, H.P., Wu, Y.P., and Ree, T.V., Porous nanocomposite polymer electrolyte prepared by a non-solvent induced phase separation process, Funct. Mater. Lett., 2008, vol. 1, no. 2, p. 139.
  45. Li, Z.H., Zhang, H.P., Zhang, P., Wu, Y.P., and Zhou, X.D., Macroporous nanocomposite polymer electrolyte for lithium-ion batteries, J. Power Sources, 2008, vol. 184, p. 562.
  46. He, X., Shi, Q., Zhou, X., Wan, C., and Jiang, C., In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries, Electrochim. Acta, 2005, vol. 51, p. 1069.
  47. Li, Z.H., Zhang, H.P., Zhang, P., Li, G.C., Wu, Y.P., and Zhou, X.D., Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries, J. Membr. Sci., 2008, vol. 322, no. 2, p. 416.
  48. Saikia, D., Chen-Yang, Y.W., Chen, Y.T., Li, Y.K., and Lin, S.I., 7Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: a comparative study with variation of salt and plasticizer with filler, Electrochim. Acta, 2009, vol. 54, no. 4, p. 1218.
  49. Vijayakumar, G., Karthick, S.N., Paramasivam, R., and Ilamaran, C., Morphology and electrochemical properties of P(VdF-HFP)/MgO-based composite microporous polymer electrolytes for Li-ion polymer batteries, Polym. Plast. Technol. Eng., 2012, vol. 51, p. 1427.
  50. Aravindan, V. and Vickraman, P., A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries, Solid State Sci., 2007, vol. 9, p. 1069.
  51. Bhatt, A.S. and Bhat, D.K., Influence of nanoscale nio on magnetic and electrochemical behavior of pvdfbased polymer nanocomposites, Polym. Bull., 2012, vol. 68, no. 1, p. 253.
  52. Jiang, Y.-X., Chen, Z.-F., Zhuang, Q.-C., Xu, J.-M., Dong, Q.-F., Huang, L., and Sun, S.-G., A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries, J. Power Sources, 2006, vol. 160, p. 1320.
  53. Yang, C.-C., Chen, Y.-C., Lian, Z.-Y., Liou, T.-H., and Shih, J.-Y., Fabrication and characterization of P(VDF-HFP) / SBA-15 composite membranes for Liion batteries, J. Solid State Electrochem., 2012, vol. 16, p. 1815.
  54. Walkowiak, M., Zalewska, A., Jesionowski, T., and Pokora, M., Stability of poly(vinylidene fluoride-cohexafluoropropylene)-based composite gel electrolytes with functionalized silicas, J. Power Sources, 2007, vol. 173, p. 721.
  55. Lee, Y.-S., Shin, W.-K., Kim, J.S., and Kim, D.-W., High performance composite polymer electrolytes for lithium-ion polymer cells composed of a graphite negative electrode and LiFePO4 positive electrode, RSC Adv., 2015, vol. 5, p. 18359.
  56. Zhou, L., Wu, N., Cao, Q., Jing, B., Wang, X., Wang, Q., and Kuang, H., A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries, Solid State Ionics, 2013, vol. 249-250, p. 93.
  57. Li, M., Guo, Y., Wei, Y., Macdiarmid A.G., and Lelkes P.I., Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials, 2006, vol. 27, no. 13, p. 2705.
  58. Kim, J-K., Cheruvally, G., Li, X., Ahn, J-H., Kim, K-W., and Ahn, H-J., Preparation and electrochemical characterization of electrospun, microporous membranebased composite polymer electrolytes for lithium batteries, J. Power Sources, 2008, vol. 178, no. 2, p. 815.
  59. Cho, T-H., Tanaka, M., Onishi, H., Kondo, Y., Nakamura, T., Yamazaki, H., Tanase, S., and Sakai, T., Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery, J. Power Sources, 2008, vol. 181, no. 1, p. 155.
  60. Cheruvally, G., Kim, J-K., Choi, J-W., Ahn, J-H., Shin, Y-J., Manuel, J., Raghavan, P., Kim, K-W., Ahn, H-J., Choi, D.S., and Song, C.E., Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries, J. Power Sources, 2007, vol. 172, no. 2, p. 863.
  61. Lalia, B.S., Samad, Y.A., and Hashaikeh, R., Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance, J. Solid State Electrochem., 2013, vol. 17, no. 3, p. 575.
  62. Zimmermann, T., Pöhler, E., and Geiger, T., Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater., 2004, vol. 6, no. 9, p. 754.
  63. Jeong, H-S., Choi, E-S., Kim, J.H., and Lee, S-Y., Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries, Electrochim. Acta, 2011, vol. 56, no. 14, p. 5201.
  64. Shubha, N., Prasanth, R., Hoon, H.H., and Srinivasan, M., Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)— layered clay nanocomposite fibrous membranes for lithium ion batteries, Mater. Res. Bull., 2013, vol. 48, no. 2, p. 526.
  65. Morita, M., Niida, Y., Yoshimoto, N., and Adachi, K., Polymeric gel electrolyte containing alkyl phosphate for lithium-ion batteries, J. Power Sources, 2005, vol. 146, nos. 1–2, p. 427.
  66. Rao, M.M., Liu, J.S., Li, W.S., Liang, Y., and Zhou, D.Y., Preparation and performance analysis of pe-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application, J. Membr Sci., 2008, vol. 322, no. 2, p. 314.
  67. Kufian, M.Z., Aziz, M.F., Shukur, M.F., Rahim, A.S., Ariffin, N.E., Shuhaimi, N.E.A., Majid, S.R., Yahya, R., and Arof, A.K., PMMA–LIBOB gel electrolyte for application in lithium ion batteries, Solid State Ionics, 2012, vol. 208, p. 36.
  68. Jung, H-R., Ju, D-H., Lee, W-J., Zhang, X., and Kotek, R., Electrospun hydrophilic fumed silica/ polyacrylonitrile nanofiber-based composite electrolyte membranes, Electrochim. Acta, 2009, vol. 54, no. 13, p. 3630.
  69. Smirnov, S.E., Siling, S.A., Korovin, N.V., Morgunov, D.A., and Ogorodnikov, A.A., Polymer Electrolytes for lithium power sources, Russ. J. Electrochem., 2001, vol. 37, no. 9, p. 1143.
  70. Chebotarev, V.P., Smirnov, S.Ye., and Komkov, V.A., Gel-polymer electrolytes based on polysulfone for lithium power sources, Plasticheskiye massy, 2003, no. 11, p. 7.
  71. Cui, W-W., Tang, D-Y., and Gong, Z-L., Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries, J. Power Sources, 2013, vol. 223, p. 206.
  72. Deka, M. and Kumar, A., Enhanced electrical and electrochemical properties of PMMA-clay nanocomposite gel polymer electrolytes, Electrochim. Acta, 2010, vol. 55, no. 5, p. 1836.
  73. Deka, M. and Kumar, A., Enhanced ionic conductivity in novel nanocomposite gel polymer electrolyte based on intercalation of PMMA into layered LiV3O8, J. Solid State Electrochem., 2010, vol. 14, pp. 1649–1656.
  74. Moreno, M., Ana, M.A.S., Gonzalez, G., and Benavente, E., Poly(acrylonitrile)-montmorillonite nanocomposites: effects of the intercalation of the filler on the conductivity of composite polymer electrolytes, Electrochim. Acta, 2010, vol. 55, no. 4, p. 1323.
  75. Kurc, B. and Jesionowski, T., Modified LiV3O8 ceramic filler for a composite gel polymer electrolytes working with LiMn2O4, J Solid State Electrochem., 2015, vol. 19, p. 1427.
  76. Rajasudha, G., Jayan, L.M., Durgalakshmi, D., Thangadurai, P., Boukos, N., Narayanan, V., and Stephen, A., Polyindole-CuO composite polymer electrolyte containing LiClO4 for lithium ion polymer batteries, Polym. Bull., 2012, vol. 68, no. 1, p. 181.
  77. Chand, N., Rai, N., Agrawal, S.L., and Patel, S.K., Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte, Bull. Mater. Sci., 2011, vol. 34, no. 7, p. 1297.
  78. Low, S.P., Ahmad, A., Hamzah, H., and Rahman, M.Y.A., Nanocomposite solid polymeric electrolyte of 49% poly(methyl methacrylate)-grafted natural rubbertitanium dioxide-lithium tetrafluoroborate (MG49-TiO2-LiBF4), J Solid State Electrochem., 2011, vol. 15, p. 2611.
  79. Cao, J., Wang, L., Fang, M., Shang, Y., Deng, L., Yang, J., Li, J., Chen, H., and He, X., Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery, Electrochim. Acta, 2013, vol. 114, p. 527.
  80. Rajendran, S., Kesavan, K., Nithya, R., and Ulaganathan, M., Transport, structural and thermal studies on nanocomposite polymer blend electrolytes for Li-ion battery applications, Curr. Appl. Phys., 2012, vol. 12, no. 3, p. 789.
  81. Pu, W., He, X., Wang, L., Tian, Z., Jiang, C., and Wan, C., Preparation of P(AN-MMA) gel electrolyte for Li-ion batteries, Ionics, 2008, vol. 14, no. 1, p. 27.
  82. Ramesh, S. and Liew, C.-W., Tailor-made fumed silica-based nano-composite polymer electrolytes consisting of BmimTFSI ionic liquid, Iran Polymer J., 2012, vol. 21, no. 4, p. 273.
  83. Liao, Y.H., Rao, M.M., Li, W.S., Yang, L.T., Zhu, B.K., Xu, R., and Fu, C.H., Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery, J. Membr. Sci., 2010, vol. 352, nos. 1–2, p. 95.
  84. Liao, Y.H., Rao, M.M., Li, W.S., Tan, C.L., Yi, J., and Chen, L., Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries, Electrochim. Acta, 2009, vol. 54, no. 26, p. 6396.
  85. Deka, M. and Kumar, A., Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries, J. Power Sources, 2011, vol. 196, no. 3, p. 1358.
  86. Deka, M., Kumar, A., Deka, H., and Karak, N., Ionic transport studies in hyperbranched polyurethane/clay nanocomposite gel polymer electrolytes, Ionics, 2012, vol. 18, no. 1, p. 181.
  87. Park, H.G. and Ryu, S.W., Effect of monomers and initiators on electrochemical properties of gel polymer electrolytes, Polymer Korea, 2010, vol. 34, no. 4, p. 357.
  88. Kang, W.C., Park, H.G., Kim, K.C., and Ryu, S.W., Synthesis and electrochemical properties of lithium methacrylate-based self-doped gel polymer electrolytes, Electrochim. Acta, 2009, vol. 54, no. 19, p. 4540.
  89. Hashmi, S.A., Kumar, A., and Tripathi, S.K., Experimental studies on poly methyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors, J. Phys. D, Appl. Phys., 2007, vol. 40, no. 21, p. 6527.
  90. Ramesh, S. and Ang, G.P., Impedance and ftir studies on plasticized PMMA–LiN(CF3SO2)2 nanocomposite polymer electrolytes, Ionics, 2010, vol. 16, no. 5, p. 465.
  91. Yarmolenko, O.V., Khatmullina, K.G., Kurmaz, S.V., Baturina, A.A., Bubnova, M.L., Shuvalova, N.I., Grachev, V.P., and Efimov, O.N., New lithium-conducting gel electrolytes containing superbranched polymers, Russ. J. Electrochem., 2013, vol. 49, p. 252.
  92. Cho, B.W., Kim, D.H., Lee, H.W., and Na, B.K., Electrochemical properties of gel polymer electrolyte based on poly(acrylonitrile)-poly(ethylene glycol diacrylate) blend, Korean J. Chem. Eng., 2007, vol. 24, no. 6, p. 1037.
  93. Lee, K.H., Lim, H.S., and Wang, J.H., Effect of unreacted monomer on performance of lithium-ion polymer batteries based on polymer electrolytes prepared by free radical polymerization, J. Power Sources, 2005, vol. 139, p. 284.
  94. Yarmolenko, O.V., Khatmullina, K.G., Tulibaeva, G.Z., Bogdanova, L.M., and Shestakov, A.F., Towards the mechanism of Li+ ion transfer in the net solid polymer electrolyte based on polyethylene glycol diacrylate-LiClO, J. Solid State Electrochem., 2012, vol. 16, p. 3371.
  95. Ishmukhametova, K.G., Yarmolenko, O.V., Bogdanova, L.M., Rozenberg, B.A., and Efimov, O.N., New solid polymer electrolytes based on polyester diacrylate for lithium power sources, Russ. J. Electrochem., 2009, vol. 45, p. 594.
  96. Yarmolenko, O.V., Khatmullina, K.G., Bogdanova, L.M., Shuvalova, N.I., Dzhavadyan, E.A., Marinin, A.A., and Volkov, V.I., Effect of TiO2 nanoparticle additions on the conductivity of network polymer electrolytes for lithium power sources, Russ. J. Electrochem., 2014, vol. 50, p. 336.
  97. Yarmolenko, O.V., Yudina, A.V., Marinin, A.A., Chernyak, A.V., Volkov, V.I., Shuvalova, N.I., and Shestakov, A.F., Nanocomposite network polymer gel-electrolytes: TiO2- and Li2TiO3-nanoparticle effects on their structure and properties, Russ. J. Electrochem., 2015, vol. 51, no. 5, p. 412.
  98. Ibrahim, S. and Johan, M.R., Conductivity, thermal and neural network model nanocomposite solid polymer electrolyte system (PEO-LiPF6–EC-CNT), Int. J. Electrochem. Sci., 2011, vol. 6, no. 11, p. 5565.
  99. Ibrahim, S., Yasin, S.M.M., Nee, N.M., Ahmad, R., and Johan, M.R., Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes, Solid State Commun., 2012, vol. 152, no. 5, p. 426.
  100. Tang, C., Hackenberg, K., Fu, Q., Ajayan, P.M., and Ardebili, H., High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers, Nano Lett., 2012, vol. 12, no. 3, p. 1152.
  101. Li, Y., Luo, D., and Yang, M., Novel nanocomposite of poly(acrylonitrile-co-glycidyl methacrylate) crosslinked with jeffamine-functionalized multiwalled carbon nanotubes as gel polymer electrolytes, J. Appl. Polym. Sci., 2013, vol. 127, no. 3, p. 2243.