Examples



mdbootstrap.com



 
Статья
2017

Specific adsorption of bromide and iodide ions on the (Cd–Ca)/dimethylformamide interface


V. V. EmetsV. V. Emets, A. A. Mel’nikovA. A. Mel’nikov, B. B. DamaskinB. B. Damaskin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517020069
Abstract / Full Text

The specific adsorption of bromide and iodide ions from mixed solutions [0.1 m M LiBr + 0.1 (1 – m) M LiBF4] and [0.1 m M LiI + 0.1 (1 – m)M LiBF4] in dimetylformamide (DMF) with the following fractures m of surface-active anion: 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 is studied on a renewable liquid (Cd–Ga) electrode by means of an ac bridge. The data on the specific adsorption of Br and I anions can be quantitatively described by the Frumkin isotherm, the same as the data on Cl. It is found that in contrast to Hg/DMF and Bi/DMF interfaces for which the adsorption energy of halide (Hal) anions (ΔG ads) increases with the transition from Cl to Br and further to I, on the (Cd–Ga)/DMF interface, the ΔG ads values increase in the inverted sequence I< Br< Cl. It is found that the energy of (Cd–Ga) interaction with Hal anions (\(\Delta {G_{\left( {{\text{Cd - Ga}}} \right) - Ha{l^ - }}}\)) also increases in the sequence I < Br < Cl. The comparative analysis of the results on the Hal adsorption on the (Сd–Gа)/DMF and (In–Gа)/DNF interfaces shows that the interaction energies metal–DMF and metal–Hal correlate with one another. For (Cd–Ga) and (In–Ga) electrodes which have virtually the same energy of metal–DMF interaction, the corresponding values of \(\Delta {G_{\left( {{\text{Cd - Ga}}} \right) - Ha{l^ - }}}\) and \(\Delta {G_{\left( {{\text{In - Ga}}} \right) - Ha{l^ - }}}\) turn out to be close not only for Cl but also for Br and I.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, RussiaV. V. Emets & A. A. Mel’nikov
  • Moscow State University, Leninskie Gory, Moscow, 119991, RussiaB. B. Damaskin
References
  1. Emets, V.V., Mel’nikov, A.A., and Damaskin, B.B., Russ. J. Electrochem., 2017, vol. 53 (in press).
  2. Frumkin, A.N., Z. Phys. Chem., 1925, vol. 116, p. 466.
  3. Frumkin, A.N., Z. Phys., 1926, vol. 35, p. 1926.
  4. Trasatti, S. and Lust, E., in Modern Aspects of Electrochemistry, Conway, B.E., White, R.E., and Bockris, J.O’M., Eds., New York: Plenum, 1999.
  5. Bagotskaya, I.A., Emets, V.V., Boitsov, B.G., and Kazarinov, V.E., Elektrokhimiya, 1988, vol. 24, p. 1145.
  6. Emets, V.V., Russ. J. Electrochem., 2010, vol. 46, p. 1036.
  7. Emets, V.V., Russ. J. Electrochem., 2015, vol. 51, p. 25.
  8. Emets, V.V., Russ. J. Electrochem., 2015, vol. 51, p. 1149.
  9. Emets, V.V., Mel’nikov, A.A., and Damaskin, B.B., Russ. J. Electrochem., 2017, vol. 53, p. 117.
  10. Emets, V.V., Damaskin, B.B., Bagotskaya, L.A., and Mishuk, V.Ya., Russ. J. Electrochem., 2000, vol. 36, p. 661.
  11. Emets, V.V. and Damaskin, B.B., J. Electroanal. Chem., 2000, vol. 491, p. 30.
  12. Damaskin, B.B., Grafov, B.M., and Baturina, O.A., Elektrokhimiya, 1992, vol. 28, p. 1624.
  13. Payne, R., J. Phys. Chem., 1965, vol. 69, p. 4113.
  14. Payne, R., J. Electrochem. Soc., 1966, vol. 113, p. 999.
  15. Payne, R., Trans. Faraday Soc., 1968, vol. 64, p. 1638.
  16. Damaskin, B.B. and Safonov, V.A., Russ. J. Electrochem., 2004, vol. 40, p. 490.
  17. Nelder, J.A. and Mead, R., Comp. J., 1965, vol. 7, p. 308.
  18. Emets, V.V. and Damaskin, B.B., J. Electroanal. Chem., 2012, vol. 667, p. 76.
  19. Emets, V.V. and Damaskin, B.B., Russ. J. Electrochem., 2011, vol. 47, p. 1319.
  20. Emets, V.V. and Damaskin, B.B., J. Electroanal. Chem., 2014, vol. 667, p. 76.
  21. Damaskin, B.B., Safonov, V.A., and Safonov, N.V., Russ. J. Electrochem., 2004, vol. 40, p. 7811.
  22. Hurwitz, H.D., J. Electroanal. Chem., 1965, vol. 10, p. 35.
  23. Dutkiewicz, E. and Parsons, R., J. Electroanal. Chem., 1966, vol. 11, p. 100.
  24. Gritzner, G., Electrochim. Acta, 1998, vol. 44, p. 73.