Examples



mdbootstrap.com



 
Статья
2018

Surface-Modified CdS/ZnO Material: Single-Reactor Synthesis and Mechanism of Formation in Aqueous Solution


N. S. KozhevnikovaN. S. Kozhevnikova, O. I. GyrdasovaO. I. Gyrdasova, I. V. BaklanovaI. V. Baklanova, L. Yu. BuldakovaL. Yu. Buldakova, M. Yu. YanchenkoM. Yu. Yanchenko, A. S. VorokhA. S. Vorokh
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427218030187
Abstract / Full Text

Method of chemical precipitation from aqueous solutions was used to cover the surface of polycrystalline ZnO nanotubes with a nanostructured CdS layer. The thus synthesized CdS/ZnO composite material was studied by the methods of X-ray diffraction analysis, electron microscopy, and optical spectroscopy. The fundamental time-related aspects of the process of CdS formation on the ZnO surface were examined. It was found that the amount of deposited CdS nanoparticles is independent of the deposition duration. The morphological specific features of ZnO nanotubes are preserved upon a prolonged keeping of ZnO in solution. The photocatalytic activity of CdS/ZnO under visible and UV light was examined in the reaction of hydroquinone oxidation. A possible mechanism of how the CdS/ZnO composite is formed in an aqueous solution in the course of growth of a layer constituted by CdS nanoparticles on the surface of ZnO nanotubes is suggested on the basis of the experimental data. It is demonstrated that the chemical-precipitation method can be used to obtain surface-active composite materials that are photoactive in the visible spectral range.

Author information
  • Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 91, Yekaterinburg, 620990, RussiaN. S. Kozhevnikova, O. I. Gyrdasova, I. V. Baklanova, L. Yu. Buldakova, M. Yu. Yanchenko & A. S. Vorokh
References
  1. Troshyn, O.V., Kovalenko, A.A., Dorofeev, S.G., and Baranov, A.N., Inorg. Mater., 2012, vol. 48, no. 7, pp. 709–715.
  2. Lisichkin, G.V., Fadeev, A.Yu., Serdan, A.A., et al., Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: Fizmatlit, 2003.
  3. Park, C.H., Zhang, S.B, and Wei, S.-H., Phys. Rev. B, 2002, vol. 66, no. 15, p. 073202.
  4. Kozhevniko va, N.S., Vorokh, A.S., and Uritskaya, A.A., Russ. Chem. Rev., 2015, vol. 84, no. 3, pp. 225–250.
  5. Shalaeva, E.V., Gyrdasova, O.I., Krasilnikov, V.N., et al., Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, Springer Proc. Phys., 2015, vol. 156, part 26, pp. 313–335.
  6. Uritskaya, A.A., Kitaev, G.A., and Belova, N.S., Russ. J. Appl. Chem., 2002, vol. 75, no. 5, pp. 846–848.
  7. Vorokh, A.S. and Rempel, A.A., JETP Lett., 2010, vol. 91, no. 2, pp. 100–104.
  8. Zhang, D.E., Pan, X.D., Zhu, H., et al., Nanoscale Res. Lett., 2008, no. 3, pp. 284–288.
  9. Ukhanov, Yu.I., Opticheskie svoistva poluprovodnikov (Optical Properties of Semiconductors), Moscow: Nauka, 1977.
  10. Ekimov, A.I. and Onushchenko, A.A., JETP Lett., 1984, vol. 40, no. 8, pp. 1136–1139.
  11. Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment (Hydrochemical Deposition of Metal Sulfide Films: Simulation and Experiment), Yekaterinburg: Izd. Ural. Otd. Ross. Akad. Nauk, 2006.
  12. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1971.
  13. Naymov, A.V., Semenov, V.N., Bolgova, T.G., and Sergeeva, A.V., Proc. Voronezh State Univ., Chem., Biol., Pharm., 2005, vol. 1, pp. 66–68.