Examples



mdbootstrap.com



 
Статья
2020

Synthesis and Cytotoxicity of Selenium-Containing Dienones


D. M. GusevD. M. Gusev, A. S. BunevA. S. Bunev, A. A. GolovanovA. A. Golovanov
Российский журнал общей химии
https://doi.org/10.1134/S1070363220020085
Abstract / Full Text

The nucleophilic addition of benzoselenol occurs regioselectively at the β-carbon of the triple bond of 1,5-disubstituted pent-2-ene-4-yne-1-ones, pent-4-ene-2-yne-1-ones and pent-1-ene-4-yne-3-ones. The resulting selenium-containing conjugated dienones exhibit pronounced cytotoxicity against some tumor cell lines.

Author information
  • Togliatti State University, 445020, Togliatti, RussiaD. M. Gusev, A. S. Bunev & A. A. Golovanov
References
  1. Organoselenium Chemistry: Synthesis and Reactions, Wirth, T., Ed., Weinheim: Wiley VCH Verlag GmbH, 2012. https://doi.org/10.1002/9783527641949
  2. Rocha, J.B.T., Piccoli, B.C., and Oliveira, C.S., Arkivoc, 2017, vol. ii, p. 457. https://doi.org/10.24820/ark.5550190.p009.784
  3. Młochowski, J., Kloc, K., Lisiak, R., Potaczek, P., and Wójtowicz, H., Arkivoc, 2007, vol. vi, p. 14. https://doi.org/10.3998/ark.5550190.0008.603
  4. Petragnani, N., Stefani, H.A., and Valduga, C.J., Tetrahedron, 2001, vol. 57, no. 8, p. 1411. https://doi.org/10.1016/S0040-4020(00)01033-4
  5. Nowak, P., Saluk-Juszczak, J., Olas, B., Kołodziejczyk, J., and Wachowicz, B., Cell. Mol. Biol. Lett., 2006, vol. 11, no. 1, p. 1. https://doi.org/10.2478/s11658-006-0001-y
  6. Wang, L., Yang, Z., Fu, J., Yin, H., Xiong, K., Tan, Q., Jin, H., Li, J., Wang, T., Tang, W., Yin, J., Cai, G., Liu, M., Kehr, S., Becker, K., and Zeng, H., Free Rad. Biol. Med., 2012, vol. 52, no. 5, p. 898. https://doi.org/10.1016/j.freeradbiomed.2011.11.034
  7. Brozmanová, J., Mániková, D., Vlčková, V., Chovanec, M., Arch. Toxicol., 2010, vol. 84. no. 12, p. 919. https://doi.org/10.1007/s00204-010-0595-8
  8. Tiekink, E.R.T., Dalton Trans., 2012, vol. 41. no. 21, p. 6390. https://doi.org/10.1039/C2DT12225A
  9. Saluk-Juszczak, J., Wachowicz, B., Wójtowicz, H., Kloc, K., Bald, E., and Glowacki, R., Cell. Biol. Toxicol., 2006, vol. 22, no. 5, p. 323. https://doi.org/10.1007/s10565-006-0091-3
  10. Sakurai, T., Kanayama, M., Shibata, T., Itoh, K., Kobayashi, A., Yamamoto, M., and Uchida, K., Chem. Res. Toxicol., 2006, vol. 19, no. 9, p. 1196. https://doi.org/10.1021/tx0601105
  11. Golovanov, A.A., Gusev, D.M., Vologzhanina, A.V., Bekin, V.V., and Pisareva, V.S., Russ. J. Org. Chem., 2014, vol. 50, no. 1, p. 13. https://doi.org/10.1134/S1070428014010035
  12. Golovanov, A.A., Gusev, D.M., and Zlotskii, S.S., Russ. J. Org. Chem., 2016, vol. 52, no. 8, p. 1205. https://doi.org/10.1134/S1070428016080194
  13. Tanini, D., Scarpelli, S., Ermini, E., and Capperucci, A., Adv. Synth Catal., 2019, vol. 361, no. 10, p. 2337. https://doi.org/10.1002/adsc.201900168
  14. Battistelli, B., Lorenzo, T., Tiecco, M., and Santi, C., Eur. J. Org. Chem., 2011, no. 10, p. 1848. https://doi.org/10.1002/ejoc.201100045
  15. Ananikov, V.P., Malyshev, D.A., Beletskaya, I.P., Aleksandrov, G.G., and Eremenko, I.L., J. Organomet. Chem., 2003, vol. 679, no. 2, p. 162. https://doi.org/10.1016/S0022-328X(03)00546-1
  16. Kawaguchi, S., Kotani, M., Atobe, S., Nomoto, A., Sonoda, M., and Ogawa, A., Organometallics, 2011, vol. 30, no. 24, p. 6766. https://doi.org/10.1021/om200663k
  17. Ishii, A., Kamon, H., Murakami, K., and Nakata, N., Eur. J. Org. Chem., 2010, no. 9, p. 1653. https://doi.org/10.1002/ejoc.200901408
  18. Nakata, N., Ikeda, T., and Ishii, A., Inorg. Chem., 2010, vol. 49, no. 17, p. 8112. https://doi.org/10.1021/ic1011742
  19. Kolos, N.N. and Komykhov, S.A., Chem. Heterocycl. Compd., 2019, vol. 55, nos. 4–5, p. 312. https://doi.org/10.1007/s10593-019-02460-2
  20. Golovanov, A.A., Bekin, V.V., Odin, I.S., Chertov, A.Yu., Grigor’eva, O.B., and Pisareva, V.S., Russ. J. Org. Chem., 2015, vol. 51, no. 12, p. 1688. https://doi.org/10.1134/S1070428015120039
  21. Statsyuk, V.E., Krasnov, V.L., Korshunov, S.P., and Bodrikov, I.V., Zh. Org. Khim., 1983, vol. 19, no. 3, p. 468.
  22. Golovanov, A.A., Latypova, D.R., Bekin, V.V., Pisareva, V.S., Vologzhanina, A.V., and Dokichev, V.A., Russ. J. Org. Chem., 2013, vol. 49, no. 9, p. 1264. https://doi.org/10.1134/S1070428013090030
  23. Vologzhanina, A.V., Golovanov, A.A., Gusev, D.M., Odin, I.S., Apreyan, R.A., and Suponitsky, K.Yu., Crystal Growth Design, 2014, vol. 14, no. 9, p. 4402. https://doi.org/10.1021/cg500512e
  24. Utekhina, N.V., Korzhova, N.V., Kazantseva, V.M., Surov, Yu.N., Orlov, V.D., and Korshunov, S.P., Zh. Obshch. Khim., 1988, vol. 58, no. 3, p. 692.
  25. Chinta, B.S. and Baire, B., J. Org. Chem., 2015, vol. 80, no. 20, p. 10208. https://doi.org/10.1021/acs.joc.5b01780
  26. Marvell, E.N., Caple, G., Delphey, C., Platt, J., Polston, N., and Tashiro, J., Tetrahedron, 1973, vol. 29, no. 23, p. 3797. https://doi.org/10.1016/0040-4020(73)80197-8
  27. Attenburrow, J., Cameron, A.F.B., Campton, J.H., Evans, R.M., Jansen, A.B.A., and Walker, T., J. Chem. Soc., 1952, p. 1094. https://doi.org/10.1039/JR9520001094
  28. Panov, A.M., Ratovskii, G.V., Kipovich, T.V., Filippova, T.M., and Buzilova, S.R., Zh. Obshch. Khim., 1982, vol. 52, no. 8, p. 1761.