Статья
2020
Abstract / Full Text

The activity of PtCu/C catalysts in methanol electrooxidation is studied in HClO4 solution. The electrochemical behavior of catalysts is compared for samples in the “as obtained” state and after their pretreatment in nitric acid which decreases the copper content in their composition. It is found that the partial selective dissolution of the alloying component renders no negative effect on the behavior of bimetallic catalysts. The prepared materials exhibit the high tolerance toward intermediates of methanol oxidation and their specific activity exceeds by a factor of 5–7 the activity of the commercial Pt/C catalysts. The results of this study open up the possibility of using de-alloyed platinum-copper catalysts in alcohol fuel cells, because this considerably decreases the risk of contamination of the polymeric membrane.

Author information
  • Southern Federal University, Faculty of Chemistry, 344090, Rostov-on Don, Russia

    V. S. Men’shchikov, V. E. Guterman, S. V. Belenov, O. A. Spiridonova & D. V. Rezvan

References
  1. Bagotsky, V.S., Fuel Cells: Problems and Solutions, 2nd Ed., Wiley, 2012.
  2. Badwal, S.P.S., Giddey, S., Kulkarni, A., Goel, J., and Basu, S., Direct ethanol fuel cells for transport and stationary applications e a comprehensive review, Appl. Energy, 2015, vol. 145, p. 80.
  3. Chen, Y., Bellini, M., Bevilacqua, M., Fornasiero, P., Lavacchi, A., Miller, H.A., Wang, L., and Vizza, F., Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells, ChemSusChem, 2015, vol. 8, p. 524.
  4. Breeze, P., Fuel Cells, Elsevier, 2017, p. 78.
  5. Martin, S., Martinez-Vazquez, B., Garcia-Ybarra, P.L., and Castillo, J.L., Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method, J. Power Sources, 2013, vol. 229, p. 179.
  6. Decoopman, B., Vincent, R., Rosini, S., Paganelli, G., and Thivel, P.-X., Proton exchange membrane fuel cell reversible performance loss induced by carbon monoxide produced during operation, J. Power Sources, 2016, vol. 324, p. 492.
  7. Gwak, G., Kim, D., Lee, S., and Ju, H., Studies of the methanol crossover and cell performance behaviors of high temperature-direct methanol fuel cells (HT-DMFCs), Int. J. Hydrogen Energy, 2018, vol. 43, p. 13999.
  8. Xu, C.X., Hou, J.G., Pang, X.H., Li, X.J., Zhu, M.L., and Tang, B.Y., Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation, Int. J. Hydrogen Energy, 2012, vol. 37, p. 10489.
  9. Cui, X.Z., Shi, J.L., Zhang, L.X., Ruan, M.L., and Gao, J.H., PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation, Carbon, 2009, vol. 47, p. 186.
  10. Xu, C., Liu, Y., Wang, J., Geng, H., and Qiu, H., Fabrication of nanoporous Cu–Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4626.
  11. O Cui, C.H., Li, H.H., and Yu, S.H., Large scale restructuring of porous Pt–Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst, Chem. Sci., 2011, vol. 2, p. 1611.
  12. Yanga, S., Zhanga, F., Gaoa, C., Xiaa, J., Lub, L., and Wanga, Z., A sandwich-like PtCo-graphene/carbon dots/graphene catalyst for efficient methanol oxidation, J. Electroanal. Chem., 2017, vol. 802, p. 27.
  13. Gao, S., Yang, X., Liang, S., Wang, Y., and Zang, H., Li, Y., One step synthesis of PtNi electrocatalyst for methanol oxidation, Inorg. Chem. Comm., 2019, vol. 106, p. 104.
  14. Suntivich, J., Xu, Z.C., Carlton, C.E., Kim, J.Y., Han, B.H., Lee, S.W., Bonnet, N., Marzari, N., Allard, L.F., Gasteiger, H.A., Hamad-Schifferli, K., and Horn Y.S., Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation, J. Am. Chem. Soc., 2013, vol. 135, p. 7985.
  15. Park, K.W., Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation, J. Phys. Chem. B, 2002, vol. 106, p. 1869.
  16. Khatib, F.N., Wilberforce, T., Ijaodola, O., Ogungbemi, E., El-Hassan, Z., Durrant, A., Thompson, J., and Olabi, A.G., Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review, Renewable Sustainable Energy Rev., 2019, vol. 111, p.1.
  17. Moguchikh, E.A., Alekseenko, A.A., and Guterman, V.E., Novikovsky, N.M., Tabachkova, N.Yu., and Menshchikov, V.S., Effect of the composition and structure of Pt(Cu)/C electrocatalysts on their stability under different stress test conditions, Russ. J. Electrochem., 2018, vol. 54, p. 979.
  18. Alekseenko, A.A., Moguchikh, E.A., Safronenko, O.I., and Guterman, V.E., Durability of de-alloyed PtCu/C electrocatalysts, Int. J. Hydrogen Energy, 2018, vol. 43, p. 22885.
  19. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Novomlinskii, I.N., Men’shchikov, V.S., Gerasimova, E.V., and Nikulin, A.Yu., De-Alloyed PtCu/C catalysts of oxygen electroreduction, Russ. J. Electrochem., 2019, vol. 55, p. 1258.
  20. Sohn, Y., Park, J.H., Kim, P., and Joo, J.B., Dealloyed PtCu catalyst as an efficient electrocatalyst in oxygen reduction reaction, Curr. App. Phys., 2015, vol. 15, p. 99.
  21. Gatalo, M., Moriau, L., Petek, U., Ruiz-Zepeda, F., Šala, M., Grom, M., Galun, T., Jovanovič, P., Pavlišič, A., Bele, M., Hodnik, N., and Gaberšček, M., CO-assisted ex-situ chemical activation of Pt-Cu/C oxygen reduction reaction electrocatalyst, Electrochim. Acta, 2019, vol. 306, p. 377.
  22. Alekseenko, A.A., Belenov, S.V., Menshikov, V.S., and Guterman, V.E., Pt(Cu)/C electrocatalysts with low platinum content, Russ. J. Electrochem., 2018, vol. 54, p. 415.
  23. Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., Tabachkova, N.Yu., Safronenko, O.I., and Moguchikh, E.A., Pt/C electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrogen Energy, 2018, vol. 43, p. 3676.
  24. Langford, J.I. and Wilson, A.J.C., Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, vol. 11, p. 102.
  25. Rudi, S., Cui, C., Gan, L., and Strasser, P., Comparative study of the electrocatalytically active surface areas (ECSAs) of Pt alloy nanoparticles evaluated by Hupd and CO-stripping voltammetry, Electrocatalysis, 2014, vol. 5, p. 408.
  26. Pryadchenko, V.V., Belenov, S.V., Shemet, D.B., Bulat, N.V., Srabionyan, V.V., Avakyan, L.A., Volochaev, V.A., Mikheykin, A.X., Bdoyan, K.E., Navikovskiy, N.X., Zizak, I., Guterman, V.E., and Bugaev, L.A., Effect of thermal treatment on the atomic structure and electrochemical characteristics of bimetallic PtCu core–shell nanoparticles in PtCu/C electrocatalysts, J. Phys. Chem. C, 2018, vol. 122, p. 17199.
  27. Oezaslan, M. and Strasser, P., Activity of dealloyed PtCo and PtCu nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell, J. Power Sources, 2011, vol. 196, p. 5240.
  28. Oezaslan, M., Hasche, F., and Strasser, P., PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media, J. Electrochem. Soc., 2012, vol. 159, p. 444.
  29. Rudi, S., Cui, C., Gan, L., and Strasser, P., Comparative study of the electrocatalytically active surface areas (ECSAs) of Pt alloy nanoparticles evaluated by Hupd and CO-stripping voltammetry, Electrocatalysis, 2014, vol. 5, p. 408.
  30. Van der Vliet, D.F., Wang, C., Li, D., Paulikas, A.P., Greeley, J., Rankin, R.B., Strmcnik, D., Tripkovic, D., Markovic, N.M., and Stamenkovic, V.R., Unique electrochemical adsorption properties of Pt-skin surfaces, Angew. Chem. Int. Ed., 2012, vol. 51, p. 3139.
  31. Zhao, W.Y., Ni, B., Yuan, Q., He, P.L., Gong, Y., Gu, L., and Wang, X., Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation, Adv. Energy Mater, 2012, vol. 7, p. 1601593.
  32. Cogenli, M.S. and Yurtcan, A.B., Catalytic activity, stability and impedance behavior of PtRu/C, PtPd/C and PtSn/C bimetallic catalysts toward methanol and formic acid oxidation, Int. J. Hydrogen Energy, 2018, vol. 7, p. 10698.
  33. Zhang, J., Qu, X., Han, Y., Shen, L., Yin S., Li G., Jiang, Y., and Sun, S., Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: enhanced catalytic performance, Appl. Catal. B, 2019, vol. 263, p. 118345.